ProCurve
Series 5400zl Switches
Series 3500yl Switches
6200yl Switch

January 2006
K.11.xx

Multicast and Routing Guide
This document contains proprietary information, which is protected by copyright. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Hewlett-Packard.

Publication Number
5991-4692
January 2006

Applicable Products
ProCurve Switch 5406zl (J8697A)
ProCurve Switch 5412zl (J8698A)
ProCurve Switch 3500yl-24G-PWR Intelligent Edge (J8692A)
ProCurve Switch 3500yl-48G-PWR Intelligent Edge (J8693A)
ProCurve Switch 6200yl-24G (J8992A)

Trademark Credits
Microsoft, Windows, and Microsoft Windows NT are US registered trademarks of Microsoft Corporation.

Disclaimer
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

Warranty
See the Customer Support/Warranty booklet included with the product.

A copy of the specific warranty terms applicable to your Hewlett-Packard products and replacement parts can be obtained from your HP Sales and Service Office or authorized dealer.
Contents

Product Documentation

- About Your Switch Manual Set .. xiii
- Feature Index ... xiv

1 Getting Started

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>1-1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1-2</td>
</tr>
<tr>
<td>Conventions</td>
<td>1-2</td>
</tr>
<tr>
<td>Feature Descriptions by Model</td>
<td>1-2</td>
</tr>
<tr>
<td>Command Syntax Statements</td>
<td>1-3</td>
</tr>
<tr>
<td>Command Prompts</td>
<td>1-3</td>
</tr>
<tr>
<td>Screen Simulations</td>
<td>1-4</td>
</tr>
<tr>
<td>Port Identity Examples</td>
<td>1-4</td>
</tr>
<tr>
<td>Configuration and Operation Examples</td>
<td>1-4</td>
</tr>
<tr>
<td>Keys</td>
<td>1-4</td>
</tr>
<tr>
<td>Sources for More Information</td>
<td>1-5</td>
</tr>
<tr>
<td>Getting Documentation From the Web</td>
<td>1-7</td>
</tr>
<tr>
<td>Online Help</td>
<td>1-7</td>
</tr>
<tr>
<td>Need Only a Quick Start?</td>
<td>1-8</td>
</tr>
<tr>
<td>IP Addressing</td>
<td>1-8</td>
</tr>
<tr>
<td>To Set Up and Install the Switch in Your Network</td>
<td>1-9</td>
</tr>
<tr>
<td>Physical Installation</td>
<td>1-9</td>
</tr>
<tr>
<td>Premium Edge Switch Features</td>
<td>1-9</td>
</tr>
</tbody>
</table>
2 Multimedia Traffic Control with IP Multicast (IGMP)

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>2-2</td>
</tr>
<tr>
<td>IGMP General Operation and Features</td>
<td>2-3</td>
</tr>
<tr>
<td>IGMP Terms</td>
<td>2-4</td>
</tr>
<tr>
<td>IGMP Operating Features</td>
<td>2-5</td>
</tr>
<tr>
<td>Basic Operation</td>
<td>2-5</td>
</tr>
<tr>
<td>Enhancements</td>
<td>2-5</td>
</tr>
<tr>
<td>Number of IP Multicast Addresses Allowed</td>
<td>2-6</td>
</tr>
<tr>
<td>CLI: Configuring and Displaying IGMP</td>
<td>2-6</td>
</tr>
<tr>
<td>How IGMP Operates</td>
<td>2-11</td>
</tr>
<tr>
<td>Operation With or Without IP Addressing</td>
<td>2-12</td>
</tr>
<tr>
<td>Automatic Fast-Leave IGMP</td>
<td>2-13</td>
</tr>
<tr>
<td>Forced Fast-Leave IGMP</td>
<td>2-16</td>
</tr>
<tr>
<td>Configuring Delayed Group Flush</td>
<td>2-17</td>
</tr>
<tr>
<td>Using the Switch as Querier</td>
<td>2-18</td>
</tr>
<tr>
<td>Excluding Well-Known or Reserved Multicast Addresses from IP Multicast Filtering</td>
<td>2-19</td>
</tr>
</tbody>
</table>

3 PIM-DM (Dense Mode)

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>3-2</td>
</tr>
<tr>
<td>Introduction</td>
<td>3-3</td>
</tr>
<tr>
<td>Feature Overview</td>
<td>3-4</td>
</tr>
<tr>
<td>PIM-DM Operation</td>
<td>3-5</td>
</tr>
<tr>
<td>Multicast Flow Management</td>
<td>3-7</td>
</tr>
<tr>
<td>General Configuration Elements</td>
<td>3-9</td>
</tr>
<tr>
<td>Terminology</td>
<td>3-9</td>
</tr>
<tr>
<td>PIM-DM Operating Rules</td>
<td>3-10</td>
</tr>
</tbody>
</table>
4 PIM-SM (Sparse Mode)

Contents

- Introduction ... 4-4
- Feature Overview .. 4-5
- Terminology ... 4-6
- PIM-SM Operation and Router Types 4-9
 - PIM-SM Operation .. 4-9
 - Rendezvous-Point Tree (RPT) ... 4-9
 - Shortest-Path Tree (SPT) .. 4-10
 - Restricting Multicast Traffic to Rendezvous-Point Trees (RPTs) .. 4-11
 - Maintaining an Active Route for Multicast Group Members .. 4-11
 - Border Routers and Multiple PIM-SM Domains 4-12
- PIM-SM Router Types ... 4-12
 - Designated Router (DR) ... 4-12
 - Bootstrap Router (BSR) ... 4-13
 - Rendezvous Point (RP) .. 4-13
 - Static Rendezvous Point (Static-RP) 4-17
- Operating Rules and Recommendations 4-19

4.1 Introduction

This section introduces the PIM-SM operation and its various router types.

4.2 Feature Overview

This section provides an overview of the PIM-SM features and their applications.

4.3 Terminology

This section defines the terminology used in PIM-SM operation.

4.4 PIM-SM Operation and Router Types

- **Rendezvous-Point Tree (RPT)**: A tree that connects the multicast source to the rendezvous point.
- **Shortest-Path Tree (SPT)**: A tree that connects the rendezvous point to the multicast destinations.
- **Restricting Multicast Traffic to Rendezvous-Point Trees (RPTs)**
- **Maintaining an Active Route for Multicast Group Members**
- **Border Routers and Multiple PIM-SM Domains**

4.5 PIM-SM Router Types

- **Designated Router (DR)**
- **Bootstrap Router (BSR)**
- **Rendezvous Point (RP)**
- **Static Rendezvous Point (Static-RP)**

4.6 Operating Rules and Recommendations

This section provides guidelines for implementing PIM-SM in a network.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displaying PIM-Specific Data</td>
<td>4-51</td>
</tr>
<tr>
<td>Displaying the Current PIM status and Global Configuration</td>
<td>4-51</td>
</tr>
<tr>
<td>Displaying Current PIM Entries Existing In the Multicast Routing Table</td>
<td>4-52</td>
</tr>
<tr>
<td>Displaying a Specific PIM Entry Stored in the Multicast Routing Table</td>
<td>4-53</td>
</tr>
<tr>
<td>Listing Currently Configured PIM Interfaces</td>
<td>4-55</td>
</tr>
<tr>
<td>Displaying IP PIM VLAN Configurations</td>
<td>4-55</td>
</tr>
<tr>
<td>Displaying PIM Neighbor Data</td>
<td>4-57</td>
</tr>
<tr>
<td>Displaying BSR Data</td>
<td>4-59</td>
</tr>
<tr>
<td>Displaying BSR Status and Configuration</td>
<td>4-59</td>
</tr>
<tr>
<td>Listing Non-Default BSR Configuration Settings</td>
<td>4-60</td>
</tr>
<tr>
<td>Displaying the Current RP Set</td>
<td>4-61</td>
</tr>
<tr>
<td>Displaying Candidate-RP Data</td>
<td>4-63</td>
</tr>
<tr>
<td>Displaying the Router's Candidate-RP Status and Configuration</td>
<td>4-63</td>
</tr>
<tr>
<td>Listing Non-Default C-RP Configuration Settings</td>
<td>4-64</td>
</tr>
<tr>
<td>Operating Notes</td>
<td>4-65</td>
</tr>
<tr>
<td>Event Log Messages</td>
<td>4-66</td>
</tr>
</tbody>
</table>

5 IP Routing Features

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of IP Routing</td>
<td>5-3</td>
</tr>
<tr>
<td>IP Interfaces</td>
<td>5-4</td>
</tr>
<tr>
<td>IP Tables and Caches</td>
<td>5-4</td>
</tr>
<tr>
<td>ARP Cache Table</td>
<td>5-5</td>
</tr>
<tr>
<td>IP Route Table</td>
<td>5-5</td>
</tr>
<tr>
<td>IP Forwarding Cache</td>
<td>5-6</td>
</tr>
<tr>
<td>IP Route Exchange Protocols</td>
<td>5-7</td>
</tr>
<tr>
<td>IP Global Parameters for Routing Switches</td>
<td>5-7</td>
</tr>
<tr>
<td>IP Interface Parameters for Routing Switches</td>
<td>5-9</td>
</tr>
</tbody>
</table>
Configuring IP Parameters for Routing Switches 5-10
 Configuring IP Addresses .. 5-10
 Changing the Router ID .. 5-10
 Configuring ARP Parameters 5-11
 How ARP Works .. 5-11
 Enabling Proxy ARP ... 5-13
 Configuring Forwarding Parameters 5-13
 Changing the TTL Threshold 5-14
 Enabling Forwarding of Directed Broadcasts 5-14
 Configuring ICMP .. 5-15
 Disabling ICMP Messages 5-15
 Disabling Replies to Broadcast Ping Requests 5-15
 Disabling ICMP Destination Unreachable Messages 5-16
 Disabling ICMP Redirects 5-17

Configuring Static IP Routes 5-17
 Static Route Types ... 5-17
 Other Sources of Routes in the Routing Table 5-18
 Static IP Route Parameters 5-18
 Static Route States Follow VLAN States 5-19
 Configuring a Static IP Route 5-19
 Displaying Static Route Information 5-21
 Configuring the Default Route 5-21

Configuring RIP ... 5-22
 Overview of RIP ... 5-22
 RIP Parameters and Defaults 5-23
 RIP Global Parameters ... 5-23
 RIP Interface Parameters 5-23
 Configuring RIP Parameters 5-24
 Enabling RIP .. 5-24
 Enabling IP RIP on a VLAN 5-25
 Changing the RIP Type on a VLAN Interface 5-25
 Changing the Cost of Routes Learned on a VLAN Interface ... 5-25
 Configuring RIP Redistribution 5-26
 Define RIP Redistribution Filters 5-26
 Modify Default Metric for Redistribution 5-27
Enable RIP Route Redistribution 5-27
Changing the Route Loop Prevention Method 5-28
Displaying RIP Information .. 5-28
 Displaying General RIP Information 5-29
 Displaying RIP Interface Information 5-31
 Displaying RIP Peer Information 5-32
 Displaying RIP Redistribution Information 5-34
 Displaying RIP Redistribution Filter (restrict) Information 5-34

Configuring OSPF ... 5-35
 Overview of OSPF .. 5-35
 Designated Routers in Multi-Access Networks 5-36
 Designated Router Election 5-36
 OSPF RFC 1583 and 2328 Compliance 5-37
 Reduction of Equivalent AS External LSAs 5-37
 Dynamic OSPF Activation and Configuration 5-39

Configuring OSPF ... 5-39
 Configuration Rules .. 5-40
 OSPF Parameters .. 5-40
 Enabling OSPF .. 5-41
 Assigning OSPF Areas ... 5-41
 Assigning an Area Range (optional) 5-43
 Assigning VLANs to an Area 5-44
 Modifying Interface Defaults 5-44
 OSPF Interface Parameters 5-45
 Assigning Virtual Links .. 5-46
 Modifying Virtual Link Parameters 5-48
 Virtual Link Parameter Descriptions 5-48
 Defining Redistribution Filters 5-49
 Modifying Default Metric for Redistribution 5-50
 Enabling Route Redistribution 5-51
 Modifying Redistribution Metric Type 5-51
 Administrative Distance 5-51
 Modifying OSPF Traps Generated 5-52
 Modifying OSPF Standard Compliance Setting 5-53
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displaying OSPF Information 5-54</td>
</tr>
<tr>
<td>Displaying General OSPF Configuration Information 5-54</td>
</tr>
<tr>
<td>Displaying OSPF Area Information 5-56</td>
</tr>
<tr>
<td>Displaying OSPF External Link State Information 5-57</td>
</tr>
<tr>
<td>Displaying OSPF Interface Information 5-58</td>
</tr>
<tr>
<td>Displaying OSPF Interface Information for a Specific VLAN or IP Address 5-60</td>
</tr>
<tr>
<td>Displaying OSPF Link State Information 5-61</td>
</tr>
<tr>
<td>Displaying OSPF Neighbor Information 5-63</td>
</tr>
<tr>
<td>Displaying OSPF Redistribution Information 5-65</td>
</tr>
<tr>
<td>Displaying OSPF Redistribution Filter (restrict) Information 5-65</td>
</tr>
<tr>
<td>Displaying OSPF Virtual Neighbor Information 5-66</td>
</tr>
<tr>
<td>Displaying OSPF Virtual Link Information 5-67</td>
</tr>
<tr>
<td>Displaying OSPF Route Information 5-69</td>
</tr>
<tr>
<td>OSPF Equal-Cost Multipath (ECMP) for Different Subnets Available Through the Same Next-Hop Routes 5-71</td>
</tr>
<tr>
<td>Displaying the Current IP Load-Sharing Configuration 5-72</td>
</tr>
<tr>
<td>Configuring IRDP 5-74</td>
</tr>
<tr>
<td>Enabling IRDP Globally 5-75</td>
</tr>
<tr>
<td>Enabling IRDP on an Individual VLAN Interface 5-75</td>
</tr>
<tr>
<td>Displaying IRDP Information 5-76</td>
</tr>
<tr>
<td>Configuring DHCP Relay 5-77</td>
</tr>
<tr>
<td>Overview 5-77</td>
</tr>
<tr>
<td>DHCP Option 82 5-77</td>
</tr>
<tr>
<td>Introduction 5-77</td>
</tr>
<tr>
<td>Option 82 Server Support 5-79</td>
</tr>
<tr>
<td>Terminology 5-79</td>
</tr>
<tr>
<td>General DHCP Option 82 Requirements and Operation 5-80</td>
</tr>
<tr>
<td>Option 82 Field Content 5-81</td>
</tr>
<tr>
<td>Forwarding Policies 5-84</td>
</tr>
<tr>
<td>Multiple Option 82 Relay Agents in a Client Request Path 5-85</td>
</tr>
<tr>
<td>Validation of Server Response Packets 5-86</td>
</tr>
<tr>
<td>Multinetted VLANs 5-88</td>
</tr>
<tr>
<td>Configuring Option 82 Operation on the Routing Switch 5-89</td>
</tr>
<tr>
<td>Operating Notes 5-90</td>
</tr>
</tbody>
</table>
6 Virtual Router Redundancy Protocol (VRRP)

Contents ... 6-1
Overview .. 6-3
Terminology ... 6-4
General Operation .. 6-5
 Virtual Router (VR) .. 6-8
 Virtual IP Address .. 6-8
 Master Router ... 6-9
 Owner Router ... 6-9
 Backup Router ... 6-10
 Virtual Router MAC Address 6-10
 VRRP and ARP .. 6-11
 General Operating Rules ... 6-11
Steps for Provisioning VRRP Operation 6-13
 Basic Configuration Process 6-13
 Example Configuration .. 6-15
 Associating More Than One Virtual IP Address With a VR ... 6-17
About Your Switch Manual Set

The switch manual set includes the following documentation:

- **Read Me First**—a printed guide shipped with your switch. Provides software update information, product notes, and other information.

- **Installation and Getting Started Guide**—a printed guide shipped with your switch. This guide explains how to prepare for and perform the physical installation and connect the switch to your network.

- **Management and Configuration Guide**—included as a PDF file on the Documentation CD. This guide describes how to configure, manage, and monitor basic switch operation.

- **Advanced Traffic Management Guide**—included as a PDF file on the Documentation CD. This guide explains how to configure traffic management features such as VLANs, MSTP, QoS, and Meshing.

- **Multicast and Routing Guide**—included as a PDF file on the Documentation CD. This guide explains how to configure IGMP, PIM, IP routing, and VRRP features.

- **Access Security Guide**—included as a PDF file on the Documentation CD. This guide explains how to configure access security features and user authentication on the switch.

- **Release Notes**—posted on the ProCurve Networking web site to provide information on software updates. The release notes describe new features, fixes, and enhancements that become available between revisions of the main product guide.

Note

For the latest version of all ProCurve switch documentation, including Release Notes covering recently added features, visit the ProCurve Networking web site at http://www.procurve.com, click on Technical support, and then click on Product manuals (all).
Feature Index

For the manual set supporting your switch model, the following feature index indicates which manual to consult for information on a given software feature.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1Q VLAN Tagging</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.1X Port-Based Priority</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.1X Multiple Authenticated Clients per port</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ACLs</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>AAA Authentication</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Authorized IP Managers</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Authorized Manager List (web, telnet, TFTP)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Auto MDIX Configuration</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>BOOTP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Config File</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Console Access</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Copy Command</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CoS (Class of Service)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Debug</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DHCP Configuration</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DHCP Option 82</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DHCP/Bootp Operation</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Diagnostic Tools</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Downloading Software</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Eavesdrop Protection</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Event Log</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Factory Default Settings</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Control (802.3x)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File Management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>File Transfers</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friendly Port Names</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaranteed Minimum Bandwidth (GMB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GVRP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity-Driven Management (IDM)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IGMP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface Access (Telnet, Console/Serial, Web)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Addressing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Routing</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Jumbos Support</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLDP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLDP-Med</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Address Management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC Lockdown</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MAC Lockout</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAC-based Authentication</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MAC authentication RADIUS support</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Management VLAN</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Meshing</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring and Analysis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicast Filtering</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Multiple Configuration Files</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>NAT</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Management Applications (SNMP)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenView Device Management</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSPF</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Passwords and Password Clear Protection</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PCM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIM-DM; PIM-SM</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ping</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Configuration</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Monitoring</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Port Security</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port Status</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Trunking (LACP)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port-Based Access Control</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Port-Based Priority (802.1Q)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power over Ethernet (PoE)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol Filters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Protocol VLANS</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Quality of Service (QoS)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIUS Authentication and Accounting</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RADIUS-Based Configuration</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Rate-limiting</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RIP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RMON 1,2,3,9</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Routing</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Routing - IP Static</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Secure Copy</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>SFLOW</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFTP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SNMPv3</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Software Downloads (SCP/SFTP, TFPT, Xmodem)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Source-Port Filters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Spanning Tree (STP, RSTP, MSTP)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SSHv2 (Secure Shell) Encryption</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SSL (Secure Socket Layer)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Stack Management (3500yl and 6200yl switches only)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Syslog</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>System Information</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TACACS+ Authentication</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Telnet Access</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TFTP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Time Protocols (TimeP, SNTP)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Traffic/Security Filters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>UDP Forwarder</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Virus Throttling (connection-rate filtering)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VLANs</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VLAN Mirroring (1 static VLAN)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Voice VLAN</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VRRP</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Web Authentication RADIUS Support</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Web-based Authentication</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Web UI</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Xmodem</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Getting Started

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1-2</td>
</tr>
<tr>
<td>Conventions</td>
<td>1-2</td>
</tr>
<tr>
<td>Feature Descriptions by Model</td>
<td>1-2</td>
</tr>
<tr>
<td>Command Syntax Statements</td>
<td>1-3</td>
</tr>
<tr>
<td>Command Prompts</td>
<td>1-3</td>
</tr>
<tr>
<td>Screen Simulations</td>
<td>1-4</td>
</tr>
<tr>
<td>Port Identity Examples</td>
<td>1-4</td>
</tr>
<tr>
<td>Configuration and Operation Examples</td>
<td>1-4</td>
</tr>
<tr>
<td>Keys</td>
<td>1-4</td>
</tr>
<tr>
<td>Sources for More Information</td>
<td>1-5</td>
</tr>
<tr>
<td>Getting Documentation From the Web</td>
<td>1-7</td>
</tr>
<tr>
<td>Online Help</td>
<td>1-7</td>
</tr>
<tr>
<td>Need Only a Quick Start?</td>
<td>1-8</td>
</tr>
<tr>
<td>IP Addressing</td>
<td>1-8</td>
</tr>
<tr>
<td>To Set Up and Install the Switch in Your Network</td>
<td>1-9</td>
</tr>
<tr>
<td>Physical Installation</td>
<td>1-9</td>
</tr>
<tr>
<td>Premium Edge Switch Features</td>
<td>1-9</td>
</tr>
</tbody>
</table>
Introduction

This Management and Configuration Guide is intended for use with the following switches:

- ProCurve Switch 5406zl
- ProCurve Switch 5412zl
- ProCurve Switch 3500yl-24G-PWR Intelligent Edge
- ProCurve Switch 3500yl-48G-PWR Intelligent Edge
- ProCurve Switch 6200yl-24G mGBIC Premium Edge

This guide describes how to use the command line interface (CLI), Menu interface, and web browser to configure, manage, monitor, and troubleshoot switch operation.

For an overview of other product documentation for the above switches, refer to “Product Documentation” on page xiii.

Conventions

This guide uses the following conventions for command syntax and displayed information.

Feature Descriptions by Model

In cases where a software feature is not available in all of the switch models covered by this guide, the section heading specifically indicates which product or product series offer the feature.

For example, (the switch is highlighted here in bold italics):

“QoS Pass-Through Mode on the Series 5400zl Switches”.
Command Syntax Statements

Syntax: ip < default-gateway < ip-addr >> | routing >

Syntax: show interfaces [port-list]

- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate optional elements.
- Braces ({ }) enclose required elements.
- Braces within square brackets ([{ }]) indicate a required element within an optional choice.
- Boldface indicates use of a CLI command, part of a CLI command syntax, or other displayed element in general text. For example:
 “Use the copy tftp command to download the key from a TFTP server.”
- Italics indicate variables for which you must supply a value when executing the command. For example, in this command syntax, you must provide one or more port numbers:

 Syntax: aaa port-access authenticator < port-list >

Command Prompts

In the default configuration, your switch displays a CLI prompt similar to the following:

ProCurve 5406zl#
ProCurve 5412zl#
ProCurve 3500yl#
ProCurve 6200yl#

To simplify recognition, this guide uses ProCurve to represent command prompts for all models. For example:

ProCurve#

(You can use the hostname command to change the text in the CLI prompt.)
Screen Simulations

Displayed Text. Figures containing simulated screen text and command output look like this:

```
ProCurve> show version
Image stamp:   /sw/code/build/info
              March 1, 2006 13:43:13
              K.11.01
              139
ProCurve>
```

Figure 1-1. Example of a Figure Showing a Simulated Screen

In some cases, brief command-output sequences appear without figure identification. For example:

```
ProCurve(config)# clear public-key
ProCurve(config)# show ip client-public-key
show_client_public_key: cannot stat keyfile
```

Port Identity Examples

This guide describes software applicable to both chassis-based and stackable ProCurve switches. Where port identities are needed in an example, this guide uses the chassis-based port identity system, such as “A1, “B3-B5”, “C7”, etc. However, unless otherwise noted, such examples apply equally to the stackable switches, which typically use only numbers, such as “1”, “3-5”, “15”, etc. for port identities.

Configuration and Operation Examples

Unless otherwise noted, examples using a particular switch model apply to all switch models covered by this guide.

Keys

Simulations of actual keys use a bold, sans-serif typeface with square brackets. For example, the Tab key appears as [Tab] and the “Y” key appears as [Y].
Sources for More Information

For additional information about switch operation and features not covered in this guide, consult the following sources:

- Feature Index—For information on which product manual to consult for a given software feature, refer to the “Feature Index” on page xiv.

Note

For the latest version of all ProCurve switch documentation, including Release Notes covering recently added features, visit the ProCurve Networking web site at http://www.procurve.com, click on **Technical support**, and then click on **Product Manuals (all)**.

- Software Release Notes—Release notes are posted on the ProCurve Networking web site and provide information on new software updates:
 - information on the ProCurve Premium Edge License (This option is used on the 3500yl and 5400zl switches to enable certain software features described in the manual set for these switches. The 6200yl switch is available only as a Premium Edge switch.)
 - new features and how to configure and use them
 - software management, including downloading software to the switch
 - software fixes addressed in current and previous releases

To view and download a copy of the latest software release notes for your switch, refer to “Getting Documentation From the Web” on page 1-7.

- Product Notes and Software Update Information—The printed **Read Me First** shipped with your switch provides software update information, product notes, and other information. For the latest version, refer to “Getting Documentation From the Web” on page 1-7.

- **Installation and Getting Started Guide**—Use the **Installation and Getting Started Guide** shipped with your switch to prepare for and perform the physical installation. This guide also steps you through connecting the switch to your network and assigning IP addressing, as well as describing the LED indications for correct operation and trouble analysis. You can download a copy from the ProCurve Networking web site. (See “Getting Documentation From the Web” on page 1-7.)
■ **Management and Configuration Guide**—Use this guide for information on topics such as:
 - various interfaces available on the switch
 - memory and configuration operation
 - interface access
 - IP addressing
 - time protocols
 - port configuration, trunking, traffic control, and PoE operation
 - SNMP, LLDP, and other network management topics
 - file transfers, switch monitoring, troubleshooting, and MAC address management

■ **Advanced Traffic Management Guide**—Use this guide for information on topics such as:
 - VLANs: Static port-based and protocol VLANs, and dynamic GVRP VLANs
 - spanning-Tree: 802.1D (STP), 802.1w (RSTP), and 802.1s (MSTP)
 - meshing
 - Quality-of-Service (QoS)
 - Access Control Lists (ACLs)

■ **Multicast and Routing Guide**—Use this guide for information on topics such as:
 - IGMP
 - PIM (SM and DM)
 - IP routing
 - VRRP

■ **Access Security Guide**—Use this guide for information on topics such as:
 - Local username and password security
 - Web-Based and MAC-based authentication
 - RADIUS and TACACS+ authentication
 - SSH (Secure Shell) and SSL (Secure Socket Layer) operation
 - 802.1X access control
 - Port security operation with MAC-based control
 - Authorized IP Manager security
 - Key Management System (KMS)
Getting Documentation From the Web

1. Go to the ProCurve Networking web site at http://www.procurve.com
2. Click on Technical support.
3. Click on Product manuals.
4. Click on the product for which you want to view or download a manual.

Online Help

If you need information on specific parameters in the menu interface, refer to the online help provided in the interface. For example:

```
================= CONSOLE - MANAGER MODE =================
Switch Configuration - Internet (IP) Service

Default Gateway : 10.35.204.1
Default TTL      : 64
IP Address       : 10.35.204.104
Subnet Mask      : 255.255.240.0

Actions--> Cancel Edit Save Help

Display help information.
Use arrow keys to change action selection and <Enter> to execute action.
```

If you need information on a specific command in the CLI, type the command name followed by “help”. For example:
Getting Started

Need Only a Quick Start?

If you need information on specific features in the ProCurve Web Browser Interface (hereafter referred to as the “web browser interface”), use the online help available for the web browser interface. For more information on web browser Help options, refer to “Online Help for the ProCurve Web Browser Interface” in the Management and Configuration Guide.

If you need further information on ProCurve switch technology, visit the ProCurve Networking web site at:

http://www.procurve.com

Need Only a Quick Start?

IP Addressing

If you just want to give the switch an IP address so that it can communicate on your network, or if you are not using VLANs, ProCurve recommends that you use the Switch Setup screen to quickly configure IP addressing. To do so, do one of the following:

■ Enter **setup** at the CLI Manager level prompt.

 ProCurve# setup

■ In the Main Menu of the Menu interface, select

 8. Run Setup

For more on using the Switch Setup screen, see the *Installation and Getting Started Guide* you received with the switch.
To Set Up and Install the Switch in Your Network

Physical Installation

Use the ProCurve *Installation and Getting Started Guide* (shipped with the switch) for the following:

- Notes, cautions, and warnings related to installing and using the switch and its related modules
- Instructions for physically installing the switch in your network
- Quickly assigning an IP address and subnet mask, set a Manager password, and (optionally) configure other basic features.
- Interpreting LED behavior.

For the latest version of the *Installation and Getting Started Guide* for your switch, refer to “Getting Documentation From the Web” on page 1-7.

Premium Edge Switch Features

The ProCurve 3500yl and 5400zl switches ship with the ProCurve Intelligent Edge software feature set. Additional Premium Edge switch software features for these switches can be acquired by purchasing a Premium Edge license and installing it on the Intelligent Edge version of these switches. Part numbers for the Premium Edge licenses are:

- 3500yl switches: J8993A
- 5400zl switches: J8994A

(Note that the ProCurve 6200yl switch is available only as a Premium Edge switch.)

For the most current information about the features included in the Premium Edge package, refer to the release notes for your product on the ProCurve Networking web site. The Premium Edge License is available from your ProCurve reseller.
Getting Started
To Set Up and Install the Switch in Your Network
Multimedia Traffic Control with IP Multicast (IGMP)

Contents

Overview ... 2-2
IGMP General Operation and Features 2-3
 IGMP Terms .. 2-4
 IGMP Operating Features ... 2-5
 Basic Operation .. 2-5
 Enhancements .. 2-5
 Number of IP Multicast Addresses Allowed 2-6
CLI: Configuring and Displaying IGMP 2-6
How IGMP Operates .. 2-11
 Operation With or Without IP Addressing 2-12
 Automatic Fast-Leave IGMP 2-13
 Forced Fast-Leave IGMP .. 2-16
 Configuring Delayed Group Flush 2-17
Using the Switch as Querier 2-18
Excluding Well-Known or Reserved Multicast Addresses from
IP Multicast Filtering .. 2-19
Overview

This chapter describes multimedia traffic control with IP multicast (IGMP) to reduce unnecessary bandwidth usage on a per-port basis, and how to configure it with the switch’s built-in interfaces:

For general information on how to use the switch’s built-in interfaces, refer to these chapters in the Management and Configuration Guide for your switch:

- Chapter 3, “Using the Menu Interface”
- Chapter 4, “Using the Command Line Interface (CLI)”
- Chapter 5, “Using the ProCurve Web Browser Interface”
- Chapter 6, “Switch Memory and Configuration”

Note

IGMP General Operation and Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>view igmp configuration</td>
<td>n/a</td>
<td>—</td>
<td>page 2-6</td>
</tr>
<tr>
<td>show igmp status for multicast groups used by the selected VLAN</td>
<td>n/a</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>enabling or disabling IGMP (Requires VLAN ID Context)</td>
<td>disabled</td>
<td>—</td>
<td>page 2-8</td>
</tr>
<tr>
<td>per-port packet control</td>
<td>auto</td>
<td>—</td>
<td>page 2-9</td>
</tr>
<tr>
<td>IGMP traffic priority</td>
<td>normal</td>
<td>—</td>
<td>page 2-10</td>
</tr>
<tr>
<td>querier</td>
<td>enabled</td>
<td>—</td>
<td>page 2-10</td>
</tr>
<tr>
<td>fast-leave</td>
<td>disabled</td>
<td>—</td>
<td>page 2-13</td>
</tr>
</tbody>
</table>

In a network where IP multicast traffic is transmitted for various multimedia applications, you can use the switch to reduce unnecessary bandwidth usage on a per-port basis by configuring IGMP (Internet Group Management Protocol controls). In the factory default state (IGMP disabled), the switch simply floods all IP multicast traffic it receives on a given VLAN through all ports on that VLAN (except the port on which it received the traffic). This can result in significant and unnecessary bandwidth usage in networks where IP multicast traffic is a factor. Enabling IGMP allows the ports to detect IGMP queries and report packets and manage IP multicast traffic through the switch.

IGMP is useful in multimedia applications such as LAN TV, desktop conferencing, and collaborative computing, where there is multipoint communication; that is, communication from one to many hosts, or communication originating from many hosts and destined for many other hosts. In such multipoint applications, IGMP will be configured on the hosts, and multicast traffic will be generated by one or more servers (inside or outside of the local network). Switches in the network (that support IGMP) can then be configured to direct the multicast traffic to only the ports where needed. If multiple VLANs are configured, you can configure IGMP on a per-VLAN basis.

Enabling IGMP allows detection of IGMP queries and report packets in order to manage IP multicast traffic through the switch. If no other querier is detected, the switch will then also function as the querier. (If you need to disable the querier feature, you can do so through the IGMP configuration MIB. Refer to “Changing the Querier Configuration Setting” on page 2-10.)
Note

IGMP configuration on the switches covered in this guide operates at the VLAN context level. If you are not using VLANs, then configure IGMP in VLAN 1 (the default VLAN) context.

IGMP Terms

- **IGMP Device**: A switch or router running IGMP traffic control features.

- **IGMP Host**: An end-node device running an IGMP (multipoint, or multicast communication) application.

- **Querier**: A required IGMP device that facilitates the IGMP protocol and traffic flow on a given LAN. This device tracks which ports are connected to devices (IGMP clients) that belong to specific multicast groups, and triggers updates of this information. A querier uses data received from the queries to determine whether to forward or block multicast traffic on specific ports. When the switch has an IP address on a given VLAN, it automatically operates as a Querier for that VLAN if it does not detect a multicast router or another switch functioning as a Querier. When enabled (the default state), the switch’s querier function eliminates the need for a multicast router. In most cases, ProCurve recommends that you leave this parameter in the default “enabled” state even if you have a multicast router performing the querier function in your multicast group. For more information, see “How IGMP Operates” on page 2-11.
IGMP Operating Features

Basic Operation

In the factory default configuration, IGMP is disabled. To enable IGMP

- If multiple VLANs are not configured, you configure IGMP on the default VLAN (DEFAULT_VLAN; VID = 1).
- If multiple VLANs are configured, you configure IGMP on a per-VLAN basis for every VLAN where this feature is to be used.

Enhancements

With the CLI, you can configure these additional options:

- **Forward with High Priority**: Disabling this parameter (the default) causes the switch or VLAN to process IP multicast traffic, along with other traffic, in the order received (usually, normal priority). Enabling this parameter causes the switch or VLAN to give a higher priority to IP multicast traffic than to other traffic.

- **Auto/Blocked/Forward**: You can use the console to configure individual ports to any of the following states:
 - **Auto** (the default): Causes the switch to interpret IGMP packets and to filter IP multicast traffic based on the IGMP packet information for ports belonging to a multicast group. This means that IGMP traffic will be forwarded on a specific port only if an IGMP host or multicast router is connected to the port.
 - **Blocked**: Causes the switch to drop all IGMP transmissions received from a specific port and to block all outgoing IP Multicast packets for that port. This has the effect of preventing IGMP traffic from moving through specific ports.
 - **Forward**: Causes the switch to forward all IGMP and IP multicast transmissions through the port.

- **Operation With or Without IP Addressing**: This feature helps to conserve IP addresses by enabling IGMP to run on VLANs that do not have an IP address. See “Operation With or Without IP Addressing” on page 2-12.

- **Querier Capability**: The switch performs this function for IGMP on VLANs having an IP address when there is no other device in the VLAN acting as querier. See “Using the Switch as Querier” on page 2-18.
Whenever IGMP is enabled, the switch generates an Event Log message indicating whether querier functionality is enabled.

IP multicast traffic groups are identified by IP addresses in the range of 224.0.0.0 to 239.255.255.255. Also, incoming IGMP packets intended for reserved, or “well-known” multicast addresses automatically flood through all ports (except the port on which the packets entered the switch). For more on this topic, see “Excluding Well-Known or Reserved Multicast Addresses from IP Multicast Filtering” on page 2-19.

For more information, refer to “How IGMP Operates” on page 2-11.

Number of IP Multicast Addresses Allowed

The total of IGMP filters (addresses) and static multicast filters together can range from 389 to 420, depending on the current max-vlans configuration. If multiple VLANs are configured, then each filter is counted once per VLAN in which it is used.

CLI: Configuring and Displaying IGMP

IGMP Commands Used in This Section

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp configuration</td>
<td>2-7</td>
</tr>
<tr>
<td>ip igmp</td>
<td>2-8</td>
</tr>
<tr>
<td>high-priority-forward</td>
<td>2-10</td>
</tr>
<tr>
<td>auto <[ethernet] <port-list></td>
<td>2-9</td>
</tr>
<tr>
<td>blocked <[ethernet] <port-list></td>
<td>2-9</td>
</tr>
<tr>
<td>forward <[ethernet] <port-list></td>
<td>2-9</td>
</tr>
<tr>
<td>querier</td>
<td>2-10</td>
</tr>
<tr>
<td>show ip igmp</td>
<td>Refer to the section titled “Internet Group Management Protocol (IGMP) Status” in appendix B of the Management and Configuration Guide for your switch.</td>
</tr>
</tbody>
</table>
Viewing the Current IGMP Configuration. This command lists the IGMP configuration for all VLANs configured on the switch or for a specific VLAN.

Syntax: show ip igmp config

Displays IGMP configuration for all VLANs on the switch.

show ip igmp vlan < vid > config

Displays IGMP configuration for a specific VLAN on the switch, including per-port data.

(For IGMP operating status, refer to the section titled “Internet Group Management Protocol (IGMP) Status” in appendix B, “Monitoring and Analyzing Switch Operation” of the Management and Configuration Guide for your switch.)

For example, suppose you have the following VLAN and IGMP configurations on the switch:

<table>
<thead>
<tr>
<th>VLAN ID</th>
<th>VLAN Name</th>
<th>IGMP Enabled</th>
<th>Forward with High Priority</th>
<th>Querier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFAULT_VLAN</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>VLAN-2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>33</td>
<td>VLAN-3</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

You could use the CLI to display this data as follows:

```
ProCurve> show ip igmp config
IGMP Service

<table>
<thead>
<tr>
<th>VLAN ID</th>
<th>VLAN NAME</th>
<th>IGMP Enabled</th>
<th>Forward with High Priority</th>
<th>Querier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFAULT_VLAN</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>VLAN-2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>33</td>
<td>VLAN-3</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
```

Figure 2-1. Example Listing of IGMP Configuration for All VLANs in the Switch
The following version of the `show ip igmp` command includes the VLAN ID (`vid`) designation, and combines the above data with the IGMP per-port configuration:

```
ProCurve(config)# show ip igmp 1 config
IGMP Service
VLAN ID : 1
VLAN NAME  : DEFAULT_VLAN
IGMP Enabled : Yes
Forward with High Priority : No
Querier Allowed : Yes
```

Enabling or Disabling IGMP on a VLAN

You can enable IGMP on a VLAN, along with the last-saved or default IGMP configuration (whichever was most recently set), or you can disable IGMP on a selected VLAN.

Syntax: `[no] ip igmp

Enables IGMP on a VLAN. Note that this command must be executed in a VLAN context.

For example, here are methods to enable and disable IGMP on the default VLAN (VID = 1).

```
ProCurve(config)# vlan 1 ip igmp
Enables IGMP on VLAN 1.

ProCurve(vlan-1)# ip igmp
Same as above.

ProCurve(config)# no vlan 1 ip igmp
Disables IGMP on vlan 1.
```
If you disable IGMP on a VLAN and then later re-enable IGMP on that VLAN, the switch restores the last-saved IGMP configuration for that VLAN. For more on how switch memory operates, refer to the chapter titled “Switch Memory and Configuration” in the Management and Configuration Guide for your switch.

You can also combine the ip igmp command with other IGMP-related commands, as described in the following sections.

Configuring Per-Port IGMP Traffic Filters.

Syntax:
```
vlan < vid > ip igmp [auto < port-list > | blocked < port-list > | forward < port-list >]
```

Used in the VLAN context, this command specifies how each port should handle IGMP traffic. (Default: auto.)

Note: Where a static multicast filter is configured on a port, and an IGMP filter created by this command applies to the same port, the IGMP filter overrides the static multicast filter for any inbound multicast traffic carrying the same multicast address as is configured in the static filter. (Refer to the section titled “Filter Types and Operation” in the “Port Traffic Controls” chapter of the Management and Configuration Guide for your switch.

For example, suppose you wanted to configure IGMP as follows for VLAN 1 on the 100/1000T ports on a module in slot 1:

<table>
<thead>
<tr>
<th>Ports</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-A2</td>
<td>auto</td>
<td>Filter multicast traffic. Forward IGMP traffic to hosts on these ports that belong to the multicast group for which the traffic is intended. (Also forward any multicast traffic through any of these ports that is connected to a multicast router.)</td>
</tr>
<tr>
<td>A3-A4</td>
<td>forward</td>
<td>Forward all multicast traffic through this port.</td>
</tr>
<tr>
<td>A5-A6</td>
<td>blocked</td>
<td>Drop all multicast traffic received from devices on these ports, and prevent any outgoing multicast traffic from moving through these ports.</td>
</tr>
</tbody>
</table>

Depending on the privilege level, you could use one of the following commands to configure IGMP on VLAN 1 with the above settings:

```
ProCurve(config)# vlan 1 ip igmp auto a1,a2 forward a3,a4 blocked a5,a6
```

```
ProCurve(config)# ip igmp auto a1,a2 forward a3,a4 blocked a5,a6
```
The following command displays the VLAN and per-port configuration resulting from the above commands.

ProCurve> show igmp vlan 1 config

Configuring IGMP Traffic Priority.

Syntax: vlan < vid > ip igmp high-priority-forward

This command assigns “high” priority to IGMP traffic or returns a high-priority setting to “normal” priority. (The traffic will be serviced at its inbound priority.) (Default: normal.)

ProCurve(config)# vlan 1 ip igmp high-priority-forward

Configures high priority for IGMP traffic on VLAN 1.

ProCurve(vlan-1)# ip igmp high-priority-forward

Same as above command, but in the VLAN 1 context level.

ProCurve(vlan 1)# no ip igmp high-priority-forward

Returns IGMP traffic to “normal” priority.

ProCurve> show ip igmp config

Show command to display results of above high-priority commands.

Configuring the Querier Function.

Syntax: [no] vlan < vid > ip igmp querier

This command disables or re-enables the ability for the switch to become querier if necessary. The no version of the command disables the querier function on the switch. The show ip igmp config command displays the current querier command. (Default Querier Capability: Enabled.)
How IGMP Operates

The Internet Group Management Protocol (IGMP) is an internal protocol of the Internet Protocol (IP) suite. IP manages multicast traffic by using switches, multicast routers, and hosts that support IGMP. (In Hewlett-Packard's implementation of IGMP, a multicast router is not necessary as long as a switch is configured to support IGMP with the querier feature enabled.) A set of hosts, routers, and/or switches that send or receive multicast data streams to or from the same source(s) is termed a multicast group, and all devices in the group use the same multicast group address. The multicast group running version 2 of IGMP uses three fundamental types of messages to communicate:

- **Query**: A message sent from the querier (multicast router or switch) asking for a response from each host belonging to the multicast group. If a multicast router supporting IGMP is not present, then the switch must assume this function in order to elicit group membership information from the hosts on the network. (If you need to disable the querier feature, you can do so through the CLI, using the IGMP configuration MIB. See “Configuring the Querier Function” on page 2-10.)

- **Report (Join)**: A message sent by a host to the querier to indicate that the host wants to be or is a member of a given group indicated in the report message.

- **Leave Group**: A message sent by a host to the querier to indicate that the host has ceased to be a member of a specific multicast group.

When an IGMPv3 Join is received by the switch, it accepts the host request and begins to forward the IGMP traffic. This means that ports which have not joined the group and are not connected to routers or the IGMP Querier will not receive the group's multicast traffic.

The switch does not support the IGMPv3 “Exclude Source” or “Include Source” options in the Join Reports. Rather, the group is simply joined from all sources.

The switch does not support becoming a version 3 Querier. It will become a version 2 Querier in the absence of any other Querier on the network.

An IP multicast packet includes the multicast group (address) to which the packet belongs. When an IGMP client connected to a switch port needs to receive multicast traffic from a specific group, it joins the group by sending an IGMP report (join request) to the network. (The multicast group specified
in the join request is determined by the requesting application running on the IGMP client.) When a networking device with IGMP enabled receives the join request for a specific group, it forwards any IP multicast traffic it receives for that group through the port on which the join request was received. When the client is ready to leave the multicast group, it sends a Leave Group message to the network and ceases to be a group member. When the leave request is detected, the appropriate IGMP device will cease transmitting traffic for the designated multicast group through the port on which the leave request was received (as long as there are no other current members of that group on the affected port).

Thus, IGMP identifies members of a multicast group (within a subnet) and allows IGMP-configured hosts (and routers) to join or leave multicast groups.

IGMP Data. To display data showing active group addresses, reports, queries, querier access port, and active group address data (port, type, and access), refer to the section titled “Internet Group Management Protocol (IGMP) Status” in appendix B, “Monitoring and Analyzing Switch Operation” of the *Management and Configuration Guide* for your switch.

Operation With or Without IP Addressing

You can configure IGMP on VLANs that do not have IP addressing. The benefit of IGMP without IP addressing is a reduction in the number of IP addresses you have to use and configure. This can be significant in a network with a large number of VLANs. The limitation on IGMP without IP addressing is that the switch cannot become Querier on any VLANs for which it has no IP address—so the network administrator must ensure that another IGMP device will act as Querier. It is also advisable to have an additional IGMP device available as a backup Querier. See the following table.

Table 2-1. Comparison of IGMP Operation With and Without IP Addressing

<table>
<thead>
<tr>
<th>IGMP Function Available With IP Addressing Configured on the VLAN</th>
<th>Available Without IP Addressing?</th>
<th>Operating Differences Without an IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward multicast group traffic to any port on the VLAN that has received a join request for that multicast group.</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>Forward join requests (reports) to the Querier.</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>Configure individual ports in the VLAN to Auto (the default)/Blocked, or Forward.</td>
<td>Yes</td>
<td>None</td>
</tr>
</tbody>
</table>
Multimedia Traffic Control with IP Multicast (IGMP)

How IGMP Operates

<table>
<thead>
<tr>
<th>IGMP Function Available With IP Addressing Configured on the VLAN</th>
<th>Available Without IP Addressing?</th>
<th>Operating Differences Without an IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure IGMP traffic forwarding to normal or high-priority forwarding.</td>
<td>Yes</td>
<td>None</td>
</tr>
<tr>
<td>Age-Out IGMP group addresses when the last IGMP client on a port in the VLAN leaves the group.</td>
<td>Yes</td>
<td>Requires that another IGMP device in the VLAN has an IP address and can operate as Querier. This can be a multicast router or another switch configured for IGMP operation. (ProCurve recommends that the VLAN also include a device operating as a backup Querier in case the device operating as the primary Querier fails for any reason.</td>
</tr>
<tr>
<td>Support Fast-Leave IGMP and Forced Fast-Leave IGMP (below).</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support automatic Querier election.</td>
<td>No</td>
<td>Querier operation not available.</td>
</tr>
<tr>
<td>Operate as the Querier.</td>
<td>No</td>
<td>Querier operation not available.</td>
</tr>
<tr>
<td>Available as a backup Querier.</td>
<td>No</td>
<td>Querier operation not available.</td>
</tr>
</tbody>
</table>

Automatic Fast-Leave IGMP

Fast-Leave IGMP. Depending on the switch model, Fast-Leave is enabled or disabled in the default configuration.

<table>
<thead>
<tr>
<th>Switch Model or Series</th>
<th>Data-Driven IGMP Included?</th>
<th>IGMP Fast-Leave Setting</th>
<th>Default IGMP Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 6400cl</td>
<td>Yes</td>
<td>Always Enabled</td>
<td>Drops unjoined multicast traffic except for always-forwarded traffic toward the Querier or multicast routers, and out of IGMP-forward ports. Selectively forwards joined multicast traffic.</td>
</tr>
<tr>
<td>Switch 6200yl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 5400zl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 5300xl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 4200vl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 3500yl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 3400cl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 2500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 2600</td>
<td>No</td>
<td>Disabled in the Default Configuration</td>
<td>IGMP Fast-Leave disabled in the default configuration. Floods unjoined multicast traffic to all ports. Selectively forwards joined multicast traffic.</td>
</tr>
<tr>
<td>Switch 2600-PWR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 4100gl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch 6108</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On switches that do not support Data-Driven IGMP, unregistered multicast groups are flooded to the VLAN rather than pruned. In this scenario, Fast-Leave IGMP can actually increase the problem of multicast flooding by removing the IGMP group filter before the Querier has recognized the IGMP group.
leave. The Querier will continue to transmit the multicast group during this short time, and because the group is no longer registered the switch will then flood the multicast group to all ports.

On ProCurve switches that do support Data-Driven IGMP (“Smart” IGMP), when unregistered multicasts are received the switch automatically filters (drops) them. Thus, the sooner the IGMP Leave is processed, the sooner this multicast traffic stops flowing.

Because of the multicast flooding problem mentioned above, the IGMP Fast-Leave feature is disabled by default on all ProCurve switches that do not support Data-Driven IGMP. (See the table above.) The feature can be enabled on these switches via an SNMP set of this object:

\[\text{hpSwitchIgmpPortForceLeaveState.vid.<port number>} \]

However, this is not recommended as this will increase the amount of multicast flooding during the period between the client’s IGMP Leave and the Querier’s processing of that Leave. For more information on this topic refer to “Forced Fast-Leave IGMP” on page 2-16.

Automatic Fast-Leave Operation. If a switch port has the following characteristics, then the Fast-Leave operation will apply:

1. Connected to only one end node
2. The end node currently belongs to a multicast group; i.e. is an IGMP client
3. The end node subsequently leaves the multicast group

Then the switch does not need to wait for the Querier status update interval, but instead immediately removes the IGMP client from its IGMP table and ceases transmitting IGMP traffic to the client. (If the switch detects multiple end nodes on the port, automatic Fast-Leave does not activate—regardless of whether one or more of these end nodes are IGMP clients.)
In the next figure, automatic Fast-Leave operates on the switch ports for IGMP clients “3A” and “5A”, but not on the switch port for IGMP clients “7A” and 7B, Server “7C”, and printer “7D”.

Figure 2-3. Example of Automatic Fast-Leave IGMP Criteria

When client “3A” running IGMP is ready to leave the multicast group, it transmits a Leave Group message. Because the switch knows that there is only one end node on port A3, it removes the client from its IGMP table and halts multicast traffic (for that group) to port A3. If the switch is not the Querier, it does not wait for the actual Querier to verify that there are no other group members on port A3. If the switch itself is the Querier, it does not query port A3 for the presence of other group members.

Note that Fast-Leave operation does not distinguish between end nodes on the same port that belong to different VLANs. Thus, for example, even if all of the devices on port A6 in figure 2-3 belong to different VLANs, Fast-Leave does not operate on port A6.

Default (Enabled) IGMP Operation Solves the “Delayed Leave” Problem. Fast-leave IGMP is enabled by default. When Fast-leave is disabled and multiple IGMP clients are connected to the same port on an IGMP device (switch or router), if only one IGMP client joins a given multicast group, then later sends a Leave Group message and ceases to belong to that group, the switch automatically retains that IGMP client in its IGMP table and continues forwarding IGMP traffic to the IGMP client until the Querier triggers confirmation that no other group members exist on the same port. This delayed leave operation means that the switch continues to transmit unnecessary multicast traffic through the port until the Querier renews multicast group status.
Configuring Fast-Leave IGMP.

Syntax:
`[no] ip igmp fastleave < port-list>`

Enables IGMP fast-leaves on the specified ports in the selected VLAN. The `no` form of the command disables IGMP fast-leave on the specified ports in the selected VLAN. Use `show running` to display the ports per-VLAN on which Fast-Leave is disabled.

Forced Fast-Leave IGMP

When enabled, Forced Fast-Leave IGMP speeds up the process of blocking unnecessary IGMP traffic to a switch port that is connected to multiple end nodes. (This feature does not activate on ports where the switch detects only one end node). For example, in figure 2-3, even if you configured Forced Fast-Leave on all ports in the switch, the feature would activate only on port A6 (which has multiple end nodes) when a Leave Group request arrived on that port.

When a port having multiple end nodes receives a Leave Group request from one end node for a given multicast group “X”, Forced Fast-Leave activates and waits a small amount of time to receive a join request from any other group “X” member on that port. If the port does not receive a join request for that group within the forced-leave interval, the switch then blocks any further group “X” traffic to the port.

Configuring Forced Fast-Leave IGMP

Syntax:
`[no] vlan < vid > ip igmp forcedfastleave <port-list>`

Enables IGMP Forced Fast-Leave on the specified ports in the selected VLAN, even if they are cascaded. (Default: Disabled.) The `no` form of the command disables Forced Fast-Leave on the specified ports in the selected VLAN. Use `show running` to display the ports per-VLAN on which Forced Fast-Leave is enabled.

To view a non-default IGMP forced fast-leave configuration on a VLAN, use the `show running-config` command. (The `show running-config` output does not include forced fast-leave if it is set to the default of 0.)

Forced fast-leave can be used when there are multiple devices attached to a port.
Configuring Delayed Group Flush

When enabled, this feature continues to filter IGMP groups for a specified additional period of time after IGMP leaves have been sent. The delay in flushing the group filter prevents unregistered traffic from being forwarded by the server during the delay period. In practice, this is rarely necessary on the switches covered in this guide, which support data-driven IGMP. (Data-Driven IGMP, which is enabled by default, prunes off any unregistered IGMP streams detected on the switch.)

Syntax: `igmp delayed-flush < time-period >`

Where leaves have been sent for IGMP groups, enables the switch to continue to flush the groups for a specified period of time. This command is applied globally to all IGMP-configured VLANs on the switch. Range: 0 - 255; Default: Disabled (0).

Syntax: `show igmp delayed-flush`

Displays the current igmp delayed-flush setting.
Using the Switch as Querier

The function of the IGMP Querier is to poll other IGMP-enabled devices in an IGMP-enabled VLAN to elicit group membership information. The switch performs this function if there is no other device in the VLAN, such as a multicast router, to act as Querier. Although the switch automatically ceases Querier operation in an IGMP-enabled VLAN if it detects another Querier on the VLAN, you can also use the switch’s CLI to disable the Querier capability for that VLAN.

Note

A Querier is required for proper IGMP operation. For this reason, if you disable the Querier function on a switch, ensure that there is an IGMP Querier (and, preferably, a backup Querier) available on the same VLAN.

If the switch becomes the Querier for a particular VLAN (for example, the DEFAULT_VLAN), then subsequently detects queries transmitted from another device on the same VLAN, the switch ceases to operate as the Querier for that VLAN. If this occurs, the switch Event Log lists a pair of messages similar to these:

```
I 01/15/01 09:01:13 igmp: DEFAULT_VLAN: Other Querier detected
I 01/15/01 09:01:13 igmp: DEFAULT_VLAN: This switch is no longer Querier
```

In the above scenario, if the other device ceases to operate as a Querier on the default VLAN, then the switch detects this change and can become the Querier as long as it is not pre-empted by some other IGMP Querier on the VLAN. In this case, the switch Event Log lists messages similar to the following to indicate that the switch has become the Querier on the VLAN:

```
I 01/15/01 09:21:55 igmp: DEFAULT_VLAN: Querier Election in process
I 01/15/01 09:22:00 igmp: DEFAULT_VLAN: This switch has been elected
```
Excluding Well-Known or Reserved Multicast Addresses from IP Multicast Filtering

Each multicast host group is identified by a single IP address in the range of 224.0.0.0 through 239.255.255.255. Specific groups of consecutive addresses in this range are termed “well-known” addresses and are reserved for pre-defined host groups. IGMP does not filter these addresses, so any packets the switch receives for such addresses are flooded out all ports assigned to the VLAN on which they were received (except the port on which the packets entered the VLAN).

The following table lists the 32 well-known address groups (8192 total addresses) that IGMP does not filter on.

Table 2-2.IP Multicast Address Groups Excluded from IGMP Filtering

<table>
<thead>
<tr>
<th>Groups of Consecutive Addresses in the Range of 224.0.0.0.x to 239.0.0.0.x*</th>
<th>Groups of Consecutive Addresses in the Range of 224.128.0.0.x to 239.128.0.0.x*</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.x</td>
<td>232.0.0.x</td>
</tr>
<tr>
<td>225.0.0.x</td>
<td>233.0.0.x</td>
</tr>
<tr>
<td>226.0.0.x</td>
<td>234.0.0.x</td>
</tr>
<tr>
<td>227.0.0.x</td>
<td>235.0.0.x</td>
</tr>
<tr>
<td>228.0.0.x</td>
<td>236.0.0.x</td>
</tr>
<tr>
<td>229.0.0.x</td>
<td>237.0.0.x</td>
</tr>
<tr>
<td>230.0.0.x</td>
<td>238.0.0.x</td>
</tr>
<tr>
<td>231.0.0.x</td>
<td>239.0.0.x</td>
</tr>
<tr>
<td>224.128.0.x</td>
<td>232.128.0.x</td>
</tr>
<tr>
<td>225.128.0.x</td>
<td>233.128.0.x</td>
</tr>
<tr>
<td>226.128.0.x</td>
<td>234.128.0.x</td>
</tr>
<tr>
<td>227.128.0.x</td>
<td>235.128.0.x</td>
</tr>
<tr>
<td>228.128.0.x</td>
<td>236.128.0.x</td>
</tr>
<tr>
<td>229.128.0.x</td>
<td>237.128.0.x</td>
</tr>
<tr>
<td>230.128.0.x</td>
<td>238.128.0.x</td>
</tr>
<tr>
<td>231.128.0.x</td>
<td>239.128.0.x</td>
</tr>
</tbody>
</table>

* X is any value from 0 to 255.
Multimedia Traffic Control with IP Multicast (IGMP)
Excluding Well-Known or Reserved Multicast Addresses from IP Multicast Filtering

Notes:

IP Multicast Filters. This operation applies to the ProCurve Series 5400zl switches, the Series 3500yl switches, the switch 6200yl, the Series 5300xl switches, as well as the 1600M, 2400M, 2424M, 4000M, and 8000M, but not to the Series 2500, 2650, Series 4100gl, Series 4200vl, or 6108 switches (which do not have static traffic/security filters).

IP multicast addresses occur in the range from 224.0.0.0 through 239.255.255.255 (which corresponds to the Ethernet multicast address range of 01005e-000000 through 01005e-7fffff). Where a switch has a static Traffic/Security filter configured with a “Multicast” filter type and a “Multicast Address” in this range, the switch will use the static filter unless IGMP learns of a multicast group destination in this range. In this case, IGMP dynamically takes over the filtering function for the multicast destination address(es) for as long as the IGMP group is active. If the IGMP group subsequently deactivates, the switch returns filtering control to the static filter.

Reserved Addresses Excluded from IP Multicast (IGMP) Filtering.
Traffic to IP multicast groups in the IP address range of 224.0.0.0 to 224.0.0.255 will always be flooded because addresses in this range are “well known” or “reserved” addresses. Thus, if IP Multicast is enabled and there is an IP multicast group within the reserved address range, traffic to that group will be flooded instead of filtered by the switch.
PIM-DM (Dense Mode)

Contents

Overview .. 3-2
Introduction ... 3-3
Feature Overview 3-4
PIM-DM Operation 3-5
 Multicast Flow Management 3-7
 General Configuration Elements 3-9
Terminology ... 3-9
PIM-DM Operating Rules 3-10
Configuring PIM-DM 3-11
 Global and PIM Configuration Contexts 3-12
 PIM VLAN (Interface) Configuration Context 3-15
Displaying PIM Data and Configuration Settings 3-22
 Displaying PIM Route Data 3-23
 Displaying PIM Status 3-28
Operating Notes 3-35
Troubleshooting 3-37
Messages Related to PIM Operation 3-38
Applicable RFCs 3-41
Exceptions to Support for RFC 2932 - Multicast Routing MIB . . 3-42
Overview

This chapter describes protocol-independent multicast routing operation on the switches covered in this guide and how to configure it with the switch's built-in interfaces, and assumes an understanding of multimedia traffic control with IP multicast (IGMP), which is described in chapter 2, “Multimedia Traffic Control with IP Multicast (IGMP)”.

For general information on how to use the switch’s built-in interfaces, refer to these chapters in the Management and Configuration Guide for your switch:

- Chapter 3, “Using the Menu Interface”
- Chapter 4, “Using the Command Line Interface (CLI)”
- Chapter 5, “Using the Web Browser Interface”
- Chapter 6, “Switch Memory and Configuration”
Introduction

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure PIM Global</td>
<td>n/a</td>
<td>—</td>
<td>3-12</td>
<td>—</td>
</tr>
<tr>
<td>Configure PIM VLAN Interface</td>
<td>n/a</td>
<td>—</td>
<td>3-15</td>
<td>—</td>
</tr>
<tr>
<td>Display PIM Route Data</td>
<td>Disabled</td>
<td>—</td>
<td>3-23</td>
<td>—</td>
</tr>
<tr>
<td>Display PIM Status</td>
<td>0 (Forward All)</td>
<td>—</td>
<td>3-28</td>
<td>—</td>
</tr>
</tbody>
</table>

In a network where IP multicast traffic is transmitted for multimedia applications, such traffic is blocked at routed interface (VLAN) boundaries unless a multicast routing protocol is running. Protocol Independent Multicast (PIM) is a family of routing protocols that form multicast trees to forward traffic from multicast sources to subnets that have used a protocol such as IGMP to request the traffic. PIM relies on the unicast routing tables created by any of several unicast routing protocols to identify the path back to a multicast source (reverse path forwarding, or RPF). With this information, PIM sets up the distribution tree for the multicast traffic. The PIM-DM and PIM-SM protocols on the switches covered by this manual enable and control multicast traffic routing.

IGMP provides the multicast traffic link between a host and a multicast router running PIM-DM or PIM-SM. IGMP and either PIM-DM or PIM-SM must be enabled on VLANs whose member ports have directly connected hosts with a valid need to join multicast groups.

PIM-DM is used in networks where, at any given time, multicast group members exist in relatively large numbers and are present in most subnets. PIM-SM (described in chapter 4 of this guide) is used in networks where multicast sources and group members are sparsely distributed over a wide area and can result in unnecessary multicast traffic on routers outside the distribution paths needed for traffic between a given multicast source and the hosts belonging to the multicast group. In such networks, PIM-SM can be used to reduce the effect of multicast traffic flows in network areas where they are not needed. And because PIM-SM does not automatically flood traffic, it is a logical choice in lower bandwidth situations such as WAN environments.
Feature Overview

PIM-DM on the switches covered in this guide includes:

- **Routing Protocol Support**: PIM uses whichever unicast routing protocol is running on the routing switch. These can include:
 - RIP
 - OSPF
 - Static routes
 - Directly connected interfaces

- **VLAN Interface Support**: Up to 128 outbound VLANs are supported in the multicast routing table (MRT) at any given time. This means the sum of all outbound VLANs across all current flows on a router may not exceed 128. (A single flow may span one inbound VLAN and up to 128 outbound VLANs, depending on the VLAN memberships of the hosts actively belonging to the flow.)

- **Flow Capacity**: Up to 2048 flows are supported in hardware across a maximum of 128 outbound VLANs. (A flow is composed of an IP source address and an IP multicast group address, regardless of the number of active hosts belonging to the multicast group at any given time.)

- **IGMP Compatibility**: PIM-DM is compatible with IGMP versions 1 - 3, and is fully interoperable with IGMP for determining multicast flows.

- **VRRP**: PIM-DM is fully interoperable with VRRP to quickly transition multicast routes in the event of a failover.

- **MIB Support**: With some exceptions, PIM-DM supports the parts of the Multicast Routing MIB applicable to PIM-DM operation. (Refer to “Exceptions to Support for RFC 2932 - Multicast Routing MIB” on page 3-42.)

- **PIM Draft Specifications**: Compatible with PIM-DM draft specification, versions 1 and 2.
PIM-DM Operation

PIM-DM operates at the router level to direct traffic for a particular multicast group along the most efficient path to the VLANs having hosts that have joined that group. A unicast source address and a multicast group address comprise a given source/group (S/G) pair. Multicast traffic moving from a source to a multicast group address creates a flow to the area(s) of the network requiring the traffic. That is, the flow destination is the multicast group address, and not a specific host or VLAN. Thus, a single multicast flow has one source and one multicast group address (destination), but may reach many hosts in different subnets, depending on which hosts have issued joins for the same multicast group.

PIM routes the multicast traffic for a particular S/G pair on paths between the source unicast address and the VLANs where it is requested (by joins from hosts connected to those VLANs). Physical destinations for a particular multicast group can be hosts in different VLANs or networks. Individual hosts use IGMP configured per-VLAN to send joins requesting membership in a particular multicast group. All hosts that have joined a given multicast group (defined by a multicast address) remain in that group as long as they continue to issue periodic joins.

On the switches covered in this guide, PIM-DM interoperates with IGMP and the switch’s routing protocols. (Note that PIM-DM operates independently of the routing protocol you choose to run on your switches, meaning you can use PIM-DM with RIP, OSPF, or static routes configured.) PIM-DM utilizes a unicast routing table to find the path to the originator of the multicast traffic and sets up multicast “trees” for distributing multicast traffic. (This method is termed reverse path forwarding, or RPF).

For the flow of a given multicast group, PIM-DM creates a “tree” structure between the source and the VLANs where hosts have joined the group. The tree structure consists of:

- Extended branches to VLANs with hosts that currently belong to the group
- Pruned branches to VLANs with no hosts that belong to the group
Figure 3-1. Example of Multicast “Tree” for a Given Flow

When the routing switch detects a new multicast flow, it initially floods the traffic throughout the PIM-DM domain, and then prunes the traffic on the branches (network paths) where joins have not been received from individual hosts. This creates the “tree” structure shown above. The routing switch maintains individual branches in the multicast tree as long as there is at least one host maintaining a membership in the multicast group. When all of the hosts in a particular VLAN drop out of the group, PIM-DM prunes that VLAN from the multicast tree. Similarly, if the routing switch detects a join from a host in a pruned VLAN, it adds that branch back into the tree.

Note

Where the multicast routers in a network use one or more multinetted VLANs, there must be at least one subnet common to all routers on the VLAN. This is necessary to provide a continuous forwarding path for the multicast traffic on the VLAN. Refer to the \[\text{ip pim-dense [ip-addr < any | source-ip-address >]}\] command under “PIM VLAN (Interface) Configuration Context” on page 3-15.
Multicast Flow Management

This section provides details on how the routing switch manages forwarding and pruned flows. This information is useful when planning topologies to include multicast support and when viewing and interpreting the Show command output for PIM-DM features.

Initial Flood and Prune. As mentioned earlier, when a router running PIM-DM receives a new multicast flow, it initially floods the traffic to all downstream multicast routers. PIM-DM then prunes the traffic on paths to VLANs that have no host joins for that multicast address. (Note that PIM-DM does not re-forward traffic back to its source VLAN.)

Maintaining the Prune State. For a multicast group “X” on a given VLAN, when the last host belonging to group “X” leaves the group, PIM places that VLAN in a prune state, meaning the group “X” multicast traffic is blocked to that VLAN. The prune state remains until a host on the same VLAN issues a join for group “X”, in which case the router cancels the prune state and changes the flow to the forwarding state.

State Refresh Packets and Bandwidth Conservation. A multicast switch, if directly connected to a multicast source such as a video conferencing application, periodically transmits *state refresh* packets to downstream multicast routers. On routers that have pruned the multicast flow, the state refresh packets keep the pruned state alive. On routers that have been added to the network after the initial flooding and pruning of a multicast group, the state refresh packets inform the newly added router of the current state of that branch. This means that if all multicast routers in a network support the state refresh packet, then the multicast router directly connected to the multicast source performs only one flood-prune cycle to the edge of the network when a new flow (multicast group) is introduced, and preserves bandwidth for other uses. Note, however, that some vendors’ multicast routers do not offer the state refresh feature. In this case, PIM-DM must periodically advertise an active multicast group to these devices by repeating the flood/prune cycle on the paths to such routers. For better traffic management in multicast-intensive networks where some multicast routers do not offer the state refresh feature, you may want to group such routers where the increased bandwidth usage will have the least effect on overall network performance.
These multicast switches support the state refresh feature and do not require periodic flood-prune cycles for a given multicast group, which frees up bandwidth for other uses.

These multicast switches support the state refresh feature but must handle periodic flood-prune cycles for the downstream routers that lack this feature.

These multicast routers do not have the state refresh feature and thus require periodic flood-prune cycles to advertise active multicast group. In this case it may be better to group these routers on the same multicast tree to avoid the additional flood/prune cycles on the routers that do support state refresh.

Indicates Paths Requiring Periodic Flood-Prune Cycles for a Given Multicast Group

Figure 3-2. Example of Bandwidth Conservation in Switches with PIM-DM State Refresh
General Configuration Elements

The configured elements PIM-DM requires are:

1. IP routing enabled on all routing switches you want to carry routed multicast traffic.

2. Configure the routing method(s) needed to reach the interfaces (VLANs) on which you want multicast traffic available for hosts in your network:
 - Enable RIP or OSPF at both the global and VLAN levels on the routers where there are connected hosts that may issue multicast joins.
 - Configure static routes to and from the destination subnets.

3. Enable IP multicast routing.

4. For each VLAN on which there are hosts that you want to join multicast groups, enable IGMP on that VLAN. Repeat this action on every switch and router belonging to the VLAN.

5. Enable PIM-DM at the global level on the routing switch and on the VLANs where you want to allow routed multicast traffic.

Note

When you initially enable PIM-DM, ProCurve recommends that you leave the PIM-DM configuration parameters at their default settings. You can then assess performance and make configuration changes where a need appears.

Terminology

Flow: Multicast traffic moving between a unicast source and a multicast group. One S/G pair is counted as a single flow, regardless of the number of hosts belonging to the related multicast group.

Host: A client device that requests multicast traffic by transmitting IGMP “joins” for a specific multicast group, such as a video conferencing application.

MRT (Multicast Routing Table). The routing switch creates this table internally to maintain data on each multicast group it supports. The Show commands described later in this chapter display MRT data managed in this table.
Multicast Address: In IP multicast traffic on the switch, this is a single IP address that can be used by a group of related or unrelated clients wanting the same data. A single S/G pair consists of unicast source address and a multicast group address. Sometimes termed a “multicast group address”. See also “Source” and “S/G Pair”.

Multicast Routing: A method for transmitting multicast datagrams from a source in one IP network to a multicast address in one or more other IP networks.

PIM Neighbor: On a routing switch configured for PIM operation, a PIM neighbor is another PIM-configured routing switch or router that is either directly connected to the first routing switch or connected through networked switches and/or hubs.

Prune: To eliminate branches of a multicast tree that have no hosts sending joins to request or maintain membership in that particular multicast group.

S/G Pair: The unicast address of the server transmitting the multicast traffic and the multicast address to which the server is transmitting the traffic.

Source (S): In IP multicast traffic on the switch, the source (S) is the unicast address of the server transmitting the multicast traffic. A single S/G pair consists of unicast source address and a multicast group address. See also “S/G Pair”.

PIM-DM Operating Rules

- The routing switch supports 2048 multicast flows in hardware. (For more on this topic, refer to “Flow Capacity” on page 3-36.)

- The multicast routing table (MRT) that PIM-DM creates allows up to 128 outbound VLANs, meaning that at any given time, PIM-DM supports multicast routing across 128 VLANs.

- The routing switch allows one instance of PIM per VLAN. Thus, in networks using multinetted VLANs, all routers on a given VLAN intended to route multicast packets must have a least one common subnet on that VLAN. Thus, in the case of multinetting, you must select one subnet on the multinetted VLAN to use for multicast routing. To facilitate this, the routing switch provides a command for specifying which IP address PIM will use on each VLAN.
Configuring PIM-DM

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Global Context Commands</td>
<td></td>
</tr>
<tr>
<td>[no] ip multicast-routing</td>
<td>3-12</td>
</tr>
<tr>
<td>[no] router pim</td>
<td>3-12</td>
</tr>
<tr>
<td>state-refresh</td>
<td>3-13</td>
</tr>
<tr>
<td>trap</td>
<td>3-13</td>
</tr>
<tr>
<td>PIM Interface Context Commands</td>
<td></td>
</tr>
<tr>
<td>[no] ip pim-dense</td>
<td>3-15</td>
</tr>
<tr>
<td>[ip-addr < any</td>
<td>source-ip-address >]</td>
</tr>
<tr>
<td>[hello-interval]</td>
<td>3-15</td>
</tr>
<tr>
<td>[hello-delay]</td>
<td>3-16</td>
</tr>
<tr>
<td>[graft-retry-interval]</td>
<td>3-16</td>
</tr>
<tr>
<td>[max-graft-retries]</td>
<td>3-17</td>
</tr>
<tr>
<td>[lan-prune-delay]</td>
<td>3-17</td>
</tr>
<tr>
<td>[propagation-delay]</td>
<td>3-18</td>
</tr>
<tr>
<td>[override-delay]</td>
<td>3-18</td>
</tr>
<tr>
<td>[ttl-threshold]</td>
<td>3-19</td>
</tr>
</tbody>
</table>
PIM-DM (Dense Mode)
Configuring PIM-DM

PIM-DM requires configuration on both the global level and on the VLAN (interface) level. The recommended configuration order is:

1. Enable IGMP on all VLANs where hosts may join a multicast group.
2. Enable the following at the global level.
 - IP routing
 - IP multicast routing
 - Router PIM and any non-default, global PIM settings you want to apply
 - Router RIP, Router OSPF, and/or a static route
3. If you selected RIP or OSPF in step 2, then on each VLAN where you want multicast routing to operate, enable the same option.
4. Enable the following in each VLAN context where you want multicast routing to operate:
 - IP RIP or IP OSPF
 - IP PIM
 - Any non-default, VLAN-level IP PIM settings you want to apply

Global and PIM Configuration Contexts

Note

PIM-DM operation requires a routing protocol enabled on the routing switch. You can use RIP, OSPF, and/or static routing. The examples in this section use RIP. For more on these topics, refer to chapter 5, “IP Routing Features” in this guide.

Syntax:

```
[no] ip multicast-routing
```

Enables or disables IP multicast routing on the routing switch. IP routing must be enabled. (Default: Disabled.)

Syntax:

```
[no] router pim
```

Enables or disables PIM at the global level and places the CLI in the PIM context. IP routing must be enabled first. (Default: Disabled.)
Syntax: router pim state-refresh < 10 - 300 >

Executed in the PIM context, this command sets the interval in seconds between successive State Refresh messages originated by the routing switch. Note that only the routing switch connected directly to the unicast source initiates state-refresh packets. All other PIM routers in the network only propagate these state-refresh packets. (Range: 10 - 300 seconds; Default: 60 seconds)

Syntax: [no] router pim trap < all | neighbor-loss | hardware-mrt-full | software-mrt-full >

Executed in the PIM context, this command enables and disables these PIM SNMP traps:

- all — Enable/Disable all PIM notification traps.
- neighbor-loss — Enable/Disable the notification trap sent when the timer for a multicast router neighbor expires and the switch has no other multicast router neighbors on the same VLAN with a lower IP address. (Default: Disabled.)
- hardware-mrt-full — Enable/Disable notification trap when the hardware multicast routing table (MRT) is full (1023 active flows). In this state, any additional flows are handled by the software MRT, which increases processing time for the affected flows. (Default: Disabled.)
- software-mrt-full — Enable/Disable notification trap when the routing switch’s software multicast routing table is full (that is, when routing resources for active flows are exhausted). (Default: Disabled.) Note that in this state, the routing switch does not accept any additional flows.

Example of Configuring PIM in the Global and PIM Contexts. In figure 3-2 on page 3-8, the “#1” routing switch is directly connected to the multicast sources for the network. In this case, suppose that you want to do the following:

- Reduce the state-refresh time from the default 60 seconds to 30 seconds. Note that the routing switch transmits state-refresh packets only if it is directly connected to the multicast source.
- Configure an SNMP trap to notify your network management station if the routing switch’s hardware multicast routing table becomes filled to the maximum of 1023 active flows.
To configure global-level PIM operation for the “5400zl #1” routing switch, you would use the commands shown in figure 3-3, below.

```
ProCurve(config)# ip routing
ProCurve(config)# ip multicast-routing
ProCurve(config)# router rip
ProCurve(config)# router pim
ProCurve(config)# state-refresh 45
ProCurve(config)# trap hardware-mrt-full
ProCurve(config)# write mem
ProCurve(config)# exit
ProCurve(config)# show run
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip routing</td>
<td>Enables IP routing.</td>
</tr>
<tr>
<td>ip multicast-routing</td>
<td>Enables multicast routing.</td>
</tr>
<tr>
<td>router rip</td>
<td>Enables RIP.</td>
</tr>
<tr>
<td>router pim</td>
<td>Exits from the RIP context.</td>
</tr>
<tr>
<td>state-refresh 45</td>
<td>Enables PIM and enters the PIM context.</td>
</tr>
<tr>
<td>trap hardware-mrt-full</td>
<td>Configures a non-default State Refresh timer.</td>
</tr>
<tr>
<td>write mem</td>
<td>Sets an SNMP trap to notify an SNMP management station if the hardware multicast routing table fills with active flows.</td>
</tr>
</tbody>
</table>

Using `show run` displays the configuration changes resulting from the above commands.

```
ProCurve(config)# show run
Running configuration:
; J8697A Configuration Editor; Created on release #K.11.XX
hostname "ProCurve"
module 1 type J8702A
module 2 type J8702A
ip routing
snmp-server community "public" Unrestricted
vlan 1
.
 vlan 29
.
 vlan 25
  name "VLAN25"
  untagged A20-A24
  ip address 10.38.10.1 255.255.255.0
  exit
ip multicast-routing
router rip
  exit
router pim
  state-refresh 45
  trap hardware-mrt-full
  exit
```

Figure 3-3. Example of Configuring PIM-DM on a Routing Switch at the Global Level
After configuring the global-level PIM operation on a routing switch, go to the device’s VLAN context level for each VLAN you want to include in your multicast routing domain. (Refer to “PIM VLAN (Interface) Configuration Context”, below.)

PIM VLAN (Interface) Configuration Context

Syntax:

```plaintext
[n] ip pim-dense
[n] vlan < vid > ip pim
```

Enables multicast routing on the VLAN interface to which the CLI is currently set. The no form disables PIM on the VLAN. Default: Disabled.

Syntax:

```plaintext
[n] ip pim-dense [ ip-addr < any | source-ip-address > ]
[n] vlan < vid > ip pim-dense [ ip-addr < any | source-ip-address > ]
```

In networks using multinetted VLANs, all routers on a given VLAN intended to route multicast packets must have at least one common subnet on that VLAN. Use this command when the VLAN is configured with multiple IP addresses (multinetting) to specify the IP address to use as the source address for PIM protocol packets outbound on the VLAN. Use `< ip-address >` to designate a single subnet in cases where multicast routers on the same multinetted VLAN are not configured with identical sets of subnet IP addresses. Use `< all >` if the multinetted VLAN is configured with the same set of subnet addresses. (*Default: The Primary VLAN.*)

Syntax:

```plaintext
ip pim-dense [ hello-interval < 5 - 30 > ]
vlan < vid > ip pim-dense [ hello-interval < 5 - 30 > ]
```

Changes the frequency at which the routing switch transmits PIM “Hello” messages on the current VLAN. The routing switch uses “Hello” packets to inform neighboring routers of its presence. The routing switch also uses this setting to compute the **Hello Hold Time**, which is included in Hello packets sent to neighbor routers. **Hello Hold Time** tells neighbor routers how long to wait for the next Hello packet from the routing switch. If another packet does not arrive within that time, the router removes the neighbor adjacency on that VLAN from the routing table, which removes any flows running on that interface. Shortening the Hello interval reduces the Hello Hold Time. This has the effect of changing how quickly other routers will stop sending traffic to the routing switch if they do not receive a new Hello packet when expected.
For example, if multiple routers are connected to the same VLAN and the routing switch requests multicast traffic, all routers on the VLAN receive that traffic. (Those which have pruned the traffic will drop it when they receive it.) If the upstream router loses contact with the routing switch receiving the multicast traffic (that is, fails to receive a Hello packet when expected), then the shorter Hello Interval causes it to stop transmitting multicast traffic onto the VLAN sooner, resulting in less unnecessary bandwidth usage. Not used with the no form of the ip pim-dense command.

Syntax:

```
ip pim-dense [ hello-delay < 0 - 5 >]
vlan < vid > ip pim-dense [ hello-delay < 0 - 5 >]
```

Changes the maximum time in seconds before the routing switch actually transmits the initial PIM Hello message on the current VLAN. In cases where a new VLAN activates with connections to multiple routers, if all of the connected routers sent Hello packets at the same time, then the receiving router could become momentarily overloaded. This value randomizes the transmission delay to a time between 0 and the hello delay setting. Using “0” means no delay. After the routing switch sends the initial Hello Packet to a newly detected VLAN interface, it sends subsequent Hello packets according to the current Hello Interval setting. Not used with the no form of the ip pim-dense command. Default: 5 seconds.

Syntax:

```
ip pim-dense [ graft-retry-interval < 1-10 >]
vlan < vid > ip pim-dense [ graft-retry-interval < 1-10 >]
```

Graft packets result when a downstream router transmits a request to join a flow. The upstream router responds with a graft acknowledgment packet. If the Graft Ack is not received within the time period of the graft-retry-interval, it resends the graft packet. This command changes the interval (in seconds) the routing switch waits for the Graft Ack (acknowledgement) from another router before resending the Graft request. Not used with the no form of the ip pim-dense command. (Default: 3 seconds.)
Syntax:

```
ip pim-dense [ max-graft-retries < 1 - 10 > ]
   vlan < vid > ip pim-dense [ max-graft-retries < 1 - 10 > ]
```

Changes the number of times the routing switch will retry sending the same graft packet to join a flow. If a Graft Ack response is not received after the specified number of retries, the routing switch ceases trying to join the flow. In this case the flow is removed until either a state refresh from upstream re-initiates the flow or an upstream router floods the flow. Increasing this value helps to improve multicast reliability. Not used with the `no` form of the `ip pim-dense` command. (Default: 3 attempts.)

Syntax:

```
ip pim-dense [ lan-prune-delay ]
   vlan < vid > ip pim-dense [ lan-prune-delay ]
```

Enables the LAN Prune Delay option on the current VLAN. With `lan-prune-delay` enabled, the routing switch informs downstream neighbors how long it will wait before pruning a flow after receiving a prune request. Other, downstream routers on the same VLAN must send a Join to override the prune before the `lan-prune-delay` time if they want the flow to continue. This prompts any downstream neighbors with hosts continuing to belong to the flow to reply with a Join. If no joins are received after the `lan-prune-delay` period, the routing switch prunes the flow. The `propagation-delay` and `override-interval` settings (below) determine the `lan-prune-delay` setting.

Uses the `no` form of the `ip pim-dense` command to disable the LAN Prune Delay option. (Default: Enabled.)
Syntax:

```
ip pim-dense [ propagation-delay < 250-2000 >]
vl < vid > ip pim-dense [ propagation-delay < 250-2000 >]

ip pim-dense [ override-interval < 500 - 6000 >]
vl < vid > ip pim-dense [ override-interval < 500 - 6000 >]
```

A routing switch sharing a VLAN with other multicast routers uses these two values to compute the `lan-prune-delay` setting (above) for how long to wait for a PIM-DM join after receiving a prune packet from downstream for a particular multicast group. For example, a network may have multiple routing switches sharing VLAN “X”. When an upstream routing switch initially floods traffic from multicast group “X” to VLAN “Y”, if one of the routing switches on VLAN “Y” does not want this traffic it issues a prune response to the upstream neighbor. The upstream neighbor then goes into a “prune pending” state for group “X” on VLAN “Y”. (During this period, the upstream neighbor continues to forward the traffic.) During the “pending” period, another routing switch on VLAN “Y” can send a group “X” Join to the upstream neighbor. If this happens, the upstream neighbor drops the “prune pending” state and continues forwarding the traffic. But if no routers on the VLAN send a Join, then the upstream router prunes group “X” from VLAN “Y” when the `lan-prune-delay` timer expires. (Defaults: propagation-delay = 500 milliseconds; override-interval = 2500 milliseconds.)
Syntax:

```
ip pim-dense [ ttl-threshold < 0 - 255 > ]
vlan < vid > ip pim-dense [ ttl-threshold < 0 - 255 > ]
```

Sets the multicast datagram time-to-live (router hop-count) threshold for the VLAN. Any IP multicast datagrams or state refresh packets with a TTL less than this threshold will not be forwarded out the interface. The default value of 0 means all multicast packets are forwarded out the interface.

This parameter provides a method for containing multicast traffic within a network, or even within specific areas of a network. Initially, the multicast traffic source sets a TTL value in the packets it transmits. Each time one of these packets passes through a multicast routing device, the TTL setting decrements by 1. If the packet arrives with a TTL lower than the *mroute ttl-threshold*, the routing switch does not forward the packet. Changing this parameter on a routing switch requires knowledge of the TTL setting of incoming multicast packets. A value that is too high can allow multicast traffic to go beyond your internal network. A value that is too low may prevent some intended hosts from receiving the desired multicast traffic. (Default: 0 — forwards multicast traffic regardless of packet TTL setting.)

Example of Configuring PIM-DM Operation at the VLAN Level. The network in figure 3-4 uses VLAN 25 for multicast traffic. However, this VLAN is multinetted and there is only one subnet (10.38.10.x) in VLAN 25 that is common to all three routing switches. Thus, when configuring VLAN 25 on these routing switches to perform multicast routing, it is necessary to use `ip pim-dense < source-ip-address >` to designate the common subnet as the source address for outbound multicast traffic on VLAN 25. (If only identical subnets were present in the multinetted VLAN 25 configuration on all three devices, then the `ip pim-dense ip-addr any` command would be used instead.) Note that the other VLANs in the network are not multinetted and therefore do not require the `ip pim-dense ip-addr < any | source-ip-address >` option.

For this example, assume that the VLANs and IP addressing are already configured on the routing switch.
On the three routing switches, VLAN 25 is multinetted with subnets that match in only one instance. Since subnet 10.38.10.x exists on VLAN 25 in all routing switches, it serves as the source IP address for multicast traffic outbound on VLAN 25 for the network.

The remaining VLANs (27, 28, 29, and 30) in the network are not multinetted on the routing switches and it is not necessary to configure a source address for multicast routing on these other VLANs.

In this example, the multicast source transmits packets with a TTL (time-to-live) of 192. To prevent these packets from moving beyond routers 2 and 3, you would configure the TTL in the downstream routers (below routers 2 and 3) at 190. (It is not necessary to configure the TTL on routers 1 - 3.)

Figure 3-5 illustrates the steps for configuring multicast routing at the VLAN level for the Series 5400zl #1 switch shown in figure 3-4.

```
ProCurve(config)# vlan 25
ProCurve(vlan-25)# ip igmp
ProCurve(vlan-25)# ip rip
ProCurve(vlan-25)# ip pim-dense ip-addr 10.38.10.1
ProCurve(vlan-25-pim-dense)# vlan 27
ProCurve(vlan-27)# ip igmp
ProCurve(vlan-27)# ip rip
ProCurve(vlan-27)# ip pim-dense
ProCurve(vlan-27-pim-dense)# vlan 29
ProCurve(vlan-29)# ip igmp
ProCurve(vlan-29)# ip rip
ProCurve(vlan-29)# ip pim-dense
ProCurve(vlan-29-pim-dense)# write mem
ProCurve(vlan-29-pim-dense)# exit
ProCurve(vlan-29)# exit
```

Figure 3-5. VLAN-Level Configuration Steps for PIM-DM on Routing Switch #1
ProCurve(config)# show run

... ip routing ...

vlan 29
 name "VLAN29"
 untagged A11-A15,A17
 ip address 10.29.30.1 255.255.255.0
 ip igmp
 exit

vlan 25
 name "VLAN25"
 untagged A20-A24
 ip address 10.38.10.1 255.255.255.0
 ip address 10.38.11.1 255.255.255.0
 ip address 10.38.12.1 255.255.255.0
 ip igmp
 exit

vlan 27
 name "VLAN27"
 untagged A6-A10,A18
 ip address 10.27.30.1 255.255.255.0
 ip igmp
 exit

ip multicast-routing
router rip
 exit
router pim
 state-refresh 45
 trap hardware-mrt-full
 exit

vlan 25
 ip rip 10.38.10.1
 ip rip 10.38.11.1
 ip pim-dense
 ip-addr 10.38.10.1
 exit

vlan 27
 ip rip 10.27.30.1
 ip pim-dense
 ip-addr any
 exit

vlan 29
 ip rip 10.29.30.1
 ip pim-dense
 ip-addr any
 exit

Note: Dashed lines indicate configuration settings affecting multicast routing.
Displaying PIM Data and Configuration Settings

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip mroute</td>
<td>3-23</td>
</tr>
<tr>
<td>[interface < vid >]</td>
<td>3-24</td>
</tr>
<tr>
<td>[< multicast-ip-addr> < source-ip-addr>]</td>
<td>3-25</td>
</tr>
<tr>
<td>show ip pim</td>
<td>3-28</td>
</tr>
<tr>
<td>[interface [< vid >]]</td>
<td>3-29</td>
</tr>
<tr>
<td>[mroute [< multicast-group-address> < multicast-source-address>]]</td>
<td>3-30</td>
</tr>
<tr>
<td>neighbor [< ip-address >]</td>
<td>3-31</td>
</tr>
<tr>
<td></td>
<td>3-32</td>
</tr>
<tr>
<td></td>
<td>3-33</td>
</tr>
<tr>
<td></td>
<td>3-34</td>
</tr>
<tr>
<td></td>
<td>3-35</td>
</tr>
</tbody>
</table>
Displaying PIM Route Data

Syntax: show ip mroute

Syntax: Without parameters, lists all VLANs actively forwarding routed, multicast traffic.

Group Address: The multicast address of the specific multicast group (flow).

Source Address: The unicast address of the multicast group source.

Neighbor: The IP address of the upstream multicast router interface (VLAN) from which the multicast traffic is coming. A blank field for a given multicast group indicates that the multicast server is directly connected to the routing switch.

VLAN: The interface on which the multicast traffic is moving.

For example, the next figure displays the show ip route output on the “5400zl #2” routing switch in figure 3-4 on page 3-20. This case illustrates two multicast groups from the same multicast server source.

```
ProCurve(config)# show ip mroute

IP Multicast Route Entries

Total number of entries : 2

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>Neighbor</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.255.255.1</td>
<td>10.27.30.2</td>
<td>10.29.30.1</td>
<td>29</td>
</tr>
<tr>
<td>239.255.255.5</td>
<td>10.27.30.2</td>
<td>10.29.30.1</td>
<td>29</td>
</tr>
</tbody>
</table>
```

Figure 3-7. Example Showing the Route Entry Data on the “#2” Routing Switch in Figure 3-4 on Page 3-20
Syntax: show ip mroute [interface < vid >]

Lists these settings:

VLAN: The VID specified in the command.

Protocol Identity: PIM-DM only.

TTL: The time-to-live threshold for packets forwarded through this VLAN. When configured, the routing switch drops multicast packets having a TTL lower than this value. (When a packet arrives, the routing switch decrements its TTL by 1, then compares the decremented packet TTL to the value set by this command.) A **TTL Threshold** setting of **0** (the default) means all multicast packets are forwarded regardless of the TTL value they carry. A multicast packet must have a TTL greater than 1 when it arrives at the routing switch. Otherwise, the routing switch drops the packet instead of forwarding it on the VLAN.

```
ProCurve(config)# show ip mroute interface 29

IP Multicast Interface

  VLAN        : 29
  Protocol    : PIM-DM
  TTL Threshold : 0
```

Figure 3-8. Example of the Above Command on Routing Switch “#2” in Figure 3-4 on Page 3-20
Syntax: show ip mroute [<multicast-ip-addr> <source-ip-addr>]

Lists the following data for the specified flow (multicast group):

Group Address: The multicast group IP address for the current group.

Source Address: The multicast source address <source-ip-addr> for the current group.

Source Mask: The subnet mask applied to the multicast source address <source-ip-addr>.

Neighbor: Lists the IP address of the upstream next-hop router running PIM-DM; that is, the router from which the routing switch is receiving datagrams for the current multicast group. This value is **0.0.0.0** if the routing switch has not detected the upstream next-hop router’s IP address. This field is empty if the multicast server is directly connected to the routing switch.

VLAN: Lists the VLAN ID (VID) on which the routing switch received the specified multicast flow.

Up Time (Sec): The elapsed time in seconds since the routing switch learned the information for the current instance of the indicated multicast flow.

Expiry Time (Sec): Indicates the remaining time in seconds before the routing switch ages-out the current flow (group membership). This value decrements until:

- Reset by a state refresh packet originating from the upstream multicast router. (The upstream multicast router issues state refresh packets for the current group as long as it either continues to receive traffic for the current flow or receives state refresh packets for the current flow from another upstream multicast router.)
- Reset by a new flow for the current multicast group on the VLAN.
- The timer expires (reaches 0). In this case the switch has not received either a state refresh packet or new traffic for the current multicast group, and ages-out (drops) the group entry.
Multicast Routing Protocol: Identifies the multicast routing protocol through which the current flow was learned.

Unicast Routing Protocol: Identifies the routing protocol through which the routing switch learned the upstream interface for the current multicast flow. The listed protocol will be either RIP, OSPF, or Static Route.

Downstream Interfaces:

VLAN: Lists the VID of the VLAN that the routing switch is using to send the outbound packets of the current multicast flow to the next-hop router.

State: Indicates whether the outbound VLAN and next-hop router for the current multicast flow are receiving datagrams.
- **Pruned:** The routing switch has not detected any joins from the current multicast flow and is not currently forwarding datagrams in the current VLAN.
- **Forwarding:** The routing switch has received a join for the current multicast flow and is forwarding datagrams in the current VLAN.

Up Time (Sec): Indicates the elapsed time in seconds since the routing switch learned the displayed information about the current multicast flow.

Expiry Time: Shows the remaining time in seconds until the Next-Hop routing switch ages-out the current flow (group membership) on the indicated VLAN. Includes the date calculated for the age-out event. This value decrements until:

- **Reset by a state refresh packet originating from the upstream multicast router.** (The upstream multicast router issues state refresh packets for the current group as long as it either continues to receive traffic for the current flow or receives state refresh packets for the current flow from another upstream multicast router.
- **Reset by a new flow for the current multicast group on the VLAN.**
- **The timer expires (reaches 0).** In this case the switch has not received either a state refresh packet or new traffic for the current multicast group, and ages-out (drops) the group entry.

Note that the “Next-Hop routing switch” is the next multicast routing switch in the path from the current multicast routing switch to the source for the displayed multicast flow.
ProCurve(config)# show ip mroute 239.255.255.5 10.27.30.2

IP Multicast Route Entry

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>Source Mask</th>
<th>Neighbor</th>
<th>VLAN</th>
<th>Up time (sec)</th>
<th>Expire Time (sec)</th>
<th>Multicast Routing Protocol</th>
<th>Unicast Routing Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.255.255.5</td>
<td>10.27.30.2</td>
<td>255.255.255.0</td>
<td>10.30.229.1</td>
<td>27</td>
<td>408</td>
<td>150</td>
<td>PIM-DM</td>
<td>rip</td>
</tr>
</tbody>
</table>

Downstream Interfaces

<table>
<thead>
<tr>
<th>VLAN</th>
<th>State</th>
<th>Up time (sec)</th>
<th>Expire Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>pruned</td>
<td>408</td>
<td>98</td>
</tr>
</tbody>
</table>

A blank Neighbor field indicates that the multicast server is directly connected to the routing switch.

Figure 3-9. Example Output for Routing Switch “#1” in Figure 3-4 on Page 3-20
Displaying PIM Status

Syntax: show ip pim

Displays PIM status and global parameters.

PIM Status: Shows either **enabled** or **disabled**.

State Refresh Interval (sec): A PIM routing switch originates state refresh messages to inform its neighbors of the active flows it is currently routing. This updates the current flow data on PIM routers that join or rejoin a multicast network after the initial flood and prune. This enables hosts on such routers to join a multicast group without having to wait for a “flood and prune” cycle. PIM routers having the state refresh capability can eliminate all but an initial flood and prune cycle. PIM routers without this capability periodically trigger a flood and prune cycle on the path between the PIM router and the multicast source. (Range: 10 - 300 seconds; Default: 60 seconds.)

Join/Prune Interval (sec): Indicates the frequency with which the router transmits join and prune messages for the multicast groups the router is forwarding.

SPT Threshold: This is the “Shortest Path Tree Threshold” used with PIM-SM. For more information, refer to “Displaying the Current PIM status and Global Configuration” on page 4-51.

Traps: Enables the following SNMP traps:

- **neighbor-loss:** Sends a trap if a neighbor router is lost.
- **hardware-mrt-full:** Sends a trap if the hardware multicast router (MRT) table is full (511 active flows).
- **software-mrt-full:** Sends a trap if the software multicast router (MRT) table is full (511 active flows). This can occur only if the hardware MRT is also full.
- **all:** Enables all of the above traps.

```
ProCurve(config)# show ip pim

PIM Global Parameters

    PIM Status : enabled
    State Refresh Interval (sec) : 60
    Join/Prune Interval (sec) : 60
    SPT Threshold : Enabled
    Traps : hardware-mrt-full
```

Figure 3-10. Example Output for Routing Switch “#1” in Figure 3-4 on Page 3-20
Syntax: show ip pim [interface]

Lists the PIM interfaces (VLANs) currently configured in the routing switch.

VLAN: Lists the VID of each VLAN configured on the switch to support PIM-DM.

IP Address: Lists the IP addresses of the PIM interfaces (VLANs).

Mode: Shows dense only.

```
ProCurve(config)# show ip pim interface

PIM Interfaces

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP Address</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10.38.10.1</td>
<td>dense</td>
</tr>
<tr>
<td>27</td>
<td>10.27.30.1</td>
<td>dense</td>
</tr>
<tr>
<td>29</td>
<td>10.29.30.1</td>
<td>dense</td>
</tr>
</tbody>
</table>
```

Figure 3-11. Example Output for Routing Switch “#1” in Figure 3-4 on Page 3-20
Syntax:
show ip pim [interface [< vid >]]

Displays the current configuration for the specified VLAN (PIM interface). Refer to table 3-1, below.

ProCurve(config)# show ip pim interface 29

PIM Interface

VLAN : 29
IP Address : 10.29.30.1
Mode : dense

Hello Interval (sec) : 30
Hello Delay (sec) : 5

Graft Retry Interval(sec) : 3
Max Graft Retries : 2
Override Interval (msec) : 2500
Lan Prune Delay : Yes
Propagation Delay (msec) : 500
Lan Delay Enabled : No
SR TTL Threshold : 2
State Refresh Capable : No

Figure 3-12. Example Output for Routing Switch “#1” in Figure 3-4 on Page 3-20

Table 3-1. PIM Interface Configuration Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Control Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>n/a</td>
<td>vlan < vid > ip pim-dense</td>
</tr>
<tr>
<td>IP</td>
<td>n/a</td>
<td>vlan < vid > ip pim-dense < any</td>
</tr>
<tr>
<td>Mode</td>
<td>dense</td>
<td>PIM-Dense or PIM-Sparse</td>
</tr>
<tr>
<td>Hello Interval (sec)</td>
<td>30</td>
<td>ip pim-dense hello interval < 5 - 30 ></td>
</tr>
<tr>
<td>Hello Hold Time</td>
<td>105</td>
<td>The routing switch computes this value from the current “Hello Interval” and includes it in the “Hello” packets the routing switch sends to neighbor routers. Neighbor routers use this value to determine how long to wait for another Hello packet from the routing switch. Refer to the description of the Hello Interval on page 3-15.</td>
</tr>
<tr>
<td>Hello Delay</td>
<td>5</td>
<td>vlan < vid > ip pim-dense hello delay < 0 - 5 ></td>
</tr>
<tr>
<td>Graft Retry Interval (sec)</td>
<td>3</td>
<td>vlan < vid > ip pim-dense graft-retry-interval < 1 - 10 ></td>
</tr>
<tr>
<td>Max Graft Retries</td>
<td>2</td>
<td>vlan < vid > ip pim-dense graft-retries < 1 - 10 ></td>
</tr>
<tr>
<td>Field</td>
<td>Default</td>
<td>Control Command</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Override Interval (msec)</td>
<td>2500</td>
<td><code>vlan < vid > ip pim-dense override-interval < 500 - 6000 ></code></td>
</tr>
<tr>
<td>Propagation Delay (msec)</td>
<td>500</td>
<td><code>vlan < vid > ip pim-dense propagation-delay < 250-2000 ></code></td>
</tr>
<tr>
<td>SR TTL Threshold (router hops)</td>
<td>0</td>
<td><code>vlan < vid > ip pim-dense ttl-threshold < 0 - 255 ></code></td>
</tr>
<tr>
<td>LAN Prune Delay</td>
<td>Yes</td>
<td><code>vlan < vid > ip pim-dense lan-prune-delay</code></td>
</tr>
<tr>
<td>LAN Delay Enabled</td>
<td>No</td>
<td>Shows Yes if all multicast routers on the current VLAN interface enabled LAN-prune-delay. Otherwise shows No.</td>
</tr>
<tr>
<td>State Refresh Capable</td>
<td>n/a</td>
<td>Indicates whether the VLAN responds to state refresh packets. The VLAN connected to the multicast source does not receive state refresh packets and thus is not state-refresh capable. Downstream VLANs in the switches covered in this guide are state-refresh capable.</td>
</tr>
</tbody>
</table>

Syntax:
`show ip pim [mroute]`

*Shows PIM-specific information from the IP multicast routing table (IP MRT). When invoked without parameters, lists all PIM entries currently in the routing switch's IP MRT.
Group Address: Lists the multicast group addresses currently active on the routing switch.
Source Address: Lists the multicast source address for each Group Address.
Metric: Indicates the path cost upstream to the multicast source. Used when multiple multicast routers contend to determine the best path to the multicast source. The lower the value, the better the path. This value is set to 0 (zero) for directly connected routes.
Metric Pref: Used when multiple multicast routers contend to determine the path to the multicast source. When this value differs between routers, PIM selects the router with the lowest value. If Metric Pref is the same between contending multicast routers, then PIM selects the router with the lowest Metric value to provide the path for the specified multicast traffic. This value is set to 0 (zero) for directly connected routes. (Metric Pref is based on the routing protocol in use: RIP, OSPF, or static routing. Also, different vendors may assign different values for this setting.)
This output shows the routing switch is receiving two multicast groups from an upstream device at 10.27.30.2. The "0" metric shows that the routing switch is directly connected to the multicast source.

ProCurve(config)# show ip pim mroute

PIM Route Entries

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>Metric</th>
<th>Metric Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.255.255.1</td>
<td>10.27.30.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>239.255.255.5</td>
<td>10.27.30.2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3-13. Example Showing a Routing Switch Detecting two Multicast Groups from a Directly Connected Multicast Server

Syntax:

```
show ip pim [mroute [multicast-group-address] [multicast-source-address]]
```

*Displays the PIM route entry information for the specified multicast group (flow):

Group Address: Lists the specified multicast group address.

Source Address: Lists the specified multicast source address.

Source Mask: Lists the network mask for the multicast source address.

Metric: Lists the number of multicast router hops to the source address.

Metric: Indicates the path cost upstream to the multicast source. Used when multiple multicast routers contend to determine the best path to the multicast source. The lower the value, the better the path.

Metric Pref: Used when multiple multicast routers contend to determine the path to the multicast source. When this value differs between routers, PIM selects the router with the lowest value. If Metric Pref is the same between contending multicast routers, then PIM selects the router with the lowest Metric value to provide the path for the specified multicast traffic. (Different vendors assign differing values for this setting.)

Assert Timer: The time remaining until the routing switch ceases to wait for a response from another multicast router to negotiate the best path back to the multicast source. If this timer expires without a response from any contending multicast routers, then the routing switch assumes it is the best path, and the specified multicast group traffic will flow through the routing switch.*
DownStream Interfaces:

- **VLAN:** Lists the VID of the destination VLAN on the next-hop multicast router.
- **Prune Reason:** Identifies the reason for pruning the flow to the indicated VLAN:
 - **Prune:** A neighbor multicast router has sent a prune request.
 - **Assert:** Another multicast router connected to the same VLAN has been elected to provide the path for the specified multicast group traffic.
 - **Other:** Used where the VLAN is in the pruned state for any reason other than the above two reasons (such as no neighbors exist and no directly connected hosts have done joins).

```
ProCurve(config)# show ip pim mroute 239.255.255.1 10.27.30.2
```

PIM Route Entry

<table>
<thead>
<tr>
<th>Group Address</th>
<th>239.255.255.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>10.27.30.2</td>
</tr>
<tr>
<td>Source Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Metric</td>
<td>3</td>
</tr>
<tr>
<td>Metric Pref</td>
<td>120</td>
</tr>
<tr>
<td>Assert Timer</td>
<td>0</td>
</tr>
</tbody>
</table>

DownStream Interfaces

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Prune Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>prune</td>
</tr>
</tbody>
</table>

This example displays the MRT data on the first of the two multicast groups shown in figure 3-13 on page 3-32.

Figure 3-14. Example From Routing Switch “#1” in Figure 3-4 on Page 3-20 Showing a Multicast Group from a Directly Connected Source
Syntax: show ip pim [neighbor]

Lists PIM neighbor information for all PIM neighbors connected to the routing switch:

IP Address: Lists the IP address of a neighbor multicast router.

VLAN: Lists the VLAN through which the routing switch connects to the indicated neighbor.

Up Time: Shows the elapsed time during which the neighbor has maintained a PIM route to the routing switch.

Expire Time: Indicates how long before the routing switch ages-out the current flow (group membership). This value decrements until:

- Reset by a state refresh packet originating from the upstream multicast router. (The upstream multicast router issues state refresh packets for the current group as long as it either continues to receive traffic for the current flow or receives state refresh packets for the current flow from another upstream multicast router.
- Reset by a new flow for the current multicast group on the VLAN.

The timer expires (reaches 0). In this case the switch has not received either a state refresh packet or new traffic for the current multicast group, and ages-out (drops) the group entry.

If the IP-ADDR is specified then detailed information for the specified neighbor is shown.

This example simulates output from Routing Switch “#1” in Figure 3-4 on Page 3-20. The data identifies the first downstream neighbor (“Routing Switch #2”).

ProCurve(config)# show ip pim neighbor

<table>
<thead>
<tr>
<th>IP Address</th>
<th>VLAN</th>
<th>Up Time (sec)</th>
<th>Expire Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.29.30.2</td>
<td>29</td>
<td>196</td>
<td>89</td>
</tr>
</tbody>
</table>

Figure 3-15. Example of PIM Neighbor Output
Syntax: show ip pim [neighbor [< ip-address >]]

Lists the same information as `show ip pim neighbor` (page 3-34) for the specified PIM neighbor.

```plaintext
This example simulates output from Routing Switch “#1” in Figure 3-4 on Page 3-20. The data is from the first downstream neighbor (Routing Switch “#2”).

ProCurve(config)# show ip pim neighbor 10.29.30.2

PIM Neighbor

  IP Address : 10.29.30.2
  VLAN : 29

  Up Time (sec) : 26
  Expire Time (sec) : 79
```

Figure 3-16. Example From Routing Switch “#1” in Figure 3-4 on Page 3-20 Showing a Specific Neighbor (Routing Switch “#2”)

Operating Notes

PIM Routers without State Refresh Messaging Capability. A PIM router without a state refresh messaging capability learns of currently active flows in a multicast network through periodic flood and prune cycles on the path back to the source. The switches covered in this guide sense downstream multicast routers that do not have the state refresh capability and will periodically flood active multicast groups to these devices. This periodic flooding is not necessary if all of the downstream multicast routers are switches covered in this guide. (The ProCurve Routing Switch Series 9300 and the routers offered by some other vendors do not offer the state refresh capability.)
Flow Capacity. The routing switch provides an ample multicast environment, supporting 1022 multicast flows in hardware across a maximum of 64 VLANs. (A flow comprises a unicast source address and a multicast group address, regardless of the number of active hosts belonging to the multicast group at any given time.) While the typical multicast environment should not normally exceed 1022 flows, the routing switch can support up to 978 additional flows in software, depending on available system resources. (Because the switch processes flows in hardware much faster than in software, you may notice slower processing times for flows occurring in software.) Also, while the routing switch can support up to 2,000 flows, the total demand on system resources from the combined use of more than 1,022 simultaneous flows, a high number of VLANs supporting multicast routing, and/or other, resource-intensive features can oversubscribe memory resources, which reduces the number of flows the routing switch can support in software. That is, the switch does not route flows in software that oversubscribe current memory resources. If the routing switch regularly exceeds the hardware limit of 1022 flows and begins routing flows in software, you may want to move some hosts that create multicast demand to another routing switch, or reduce the number of VLANs on the routing switch by moving some VLANs to another routing switch. Note that the routing switch generates a log message if it either routes a flow in software or drops a flow intended for software routing because memory is oversubscribed. (Refer to “Messages Related to PIM Operation” on page 3-38.)

IGMP Traffic High-Priority Disabled. Enabling IP multicast routing to support PIM-DM operation has the effect of disabling IGMP traffic high-priority, if configured. (Refer to “Configuring IGMP Traffic Priority” on page 2-10.)

ACLs and PIM. The switch allows ACL filtering on unicast addresses, but not on multicast addresses. Also, an ACL does not take effect on a flow if the flow began before the ACL was configured.

When To Enable IGMP on a VLAN. When PIM is enabled on a VLAN, it is not necessary to also enable IGMP unless there may be Joins occurring on that VLAN. But if IGMP is enabled on a VLAN, you must also enable PIM if you want that VLAN to participate in multicast routing.

IP Address Removed. If you remove the IP address for a VLAN, the switch automatically removes the PIM configuration for that VLAN.
Troubleshooting

Symptom: Noticeable slowdown in some multicast traffic. If the switch is supporting more than 1022 active flows. This generates the message Unable to learn HW IP multicast groups, table FULL in the Event Log because there is no room in the hardware Multicast Routing Table to add another Multicast Group. Software will route any multicast packets sent to multicast groups that are not in the hardware Multicast Routing Table, but it will be slower and packets may be dropped if the data rate is greater than 3000 packets per second. Refer to “Flow Capacity” on page 3-36.

Note that the PIM protocol uses one MRT entry for every IP multicast source/group pair that it is routing. An entry is not used if the multicast flow is bridged and not routed. Entries in this table are automatically aged out if they are unused for a period of time.

Heavy Memory Usage. Heavy use of PIM (many S/G flows over many VLANs) combined with other memory-intensive features, can oversubscribe memory resources and impact overall performance. If available memory is exceeded, the switch drops any new multicast flows and generates appropriate Event Log messages. Corrective actions can include reducing the number of VLANs on the switches covered in this guide by moving some VLANs to another device, free up system resources by disabling another, non-PIM feature, and/or moving some hosts to another device. For more information, refer to “Operating Notes” on page 3-35 and “Messages Related to PIM Operation” on page 3-38.

IPv4 Table Operation. The IPv4 table, which contains the active IP multicast addresses the switch is currently supporting, has 128k entries. However, the IPv4 table also contains IP host entries for every IP source or destination that the switch has learned, as well as ACL flow entries. Entries in this table are generally aged out if they are unused for 5 minutes or more.
Messages Related to PIM Operation

These messages appear in the Event Log and, if Syslog Debug is configured, in the designated Debug destinations.

Note

The `<counter>` value displayed at the end of each PIM Event Log message (and SNMP trap messages, if trap receivers are configured) indicates the number of times the switch has detected a recurring event since the last reboot. For more information, refer to “Using the Event Log To Identify Problem Sources” in the “Troubleshooting” appendix of the latest version of the Management and Configuration Guide for your switch. (The latest version of all ProCurve switch documentation is available on the ProCurve website at http://www.procurve.com)

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><alpha-string></code> pkt, src IP <code><ip-addr></code> vid <code><vlan-id></code> (not a nbr) <code><counter></code></td>
<td>A PIM packet arrived from another router for which no neighbor was found. May indicate a misconfiguration between the sending and receiving router. May also occur if a connected router is disconnected, then reconnected.</td>
</tr>
<tr>
<td>Bad TTL in State Refresh pkt from IP <code><source-ip-addr></code> <code><counter></code></td>
<td>The switch detected a TTL of 0 (zero) in the PIM portion of a state refresh packet. (Note that this is not the IP TTL.)</td>
</tr>
<tr>
<td>Failed alloc of HW <code><alpha-str></code> for flow <code><multicast-address></code>, <code><source-address></code> <code><dup-msg-cnt></code></td>
<td>There are more than 1022 active flows. The switch routes the excess through software, which processes traffic at a slower rate. If this will be an ongoing or chronic condition, transfer some of the flows to another router.</td>
</tr>
<tr>
<td>Failed to alloc a PIM <code><data-type></code> pkt <code><counter></code></td>
<td>The router was unable to allocate memory for a PIM control packet. Router memory is oversubscribed. Reduce the number of VLANs or increase the hello delay and/or the override interval to reduce the number of simultaneous packet transmissions. Note that if the number of flows exceeds 1022, the excess flows are routed in software, which reduces the number of packet transmissions. In this case, reducing the number of flows by moving some clients to other routers can help.</td>
</tr>
<tr>
<td>Failed to initialize <code><text-str></code> as a call back routine <code><counter></code></td>
<td>Indicates an internal error. Report the incident to your ProCurve customer care center and re-install the router software.</td>
</tr>
<tr>
<td>I/F configured with IP <code><ip-address></code> on vid <code><vlan-id></code> <code><counter></code></td>
<td>Indicates that the interface (VLAN) has been configured with the indicated IP address. At boot-up or when an IP address is changed, the switch generates this message for each PIM-configured VLAN.</td>
</tr>
<tr>
<td>Message</td>
<td>Meaning</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>I/F removal with IP <code><ip-addr></code> on vid <code><vlan-id></code> (<counter>)</td>
<td>Indicates that a PIM interface (VLAN) has been removed from the router as a result of an IP address change or removal.</td>
</tr>
</tbody>
</table>
| MCAST flow `<multicast-address>` `<source-address>` not rteing *(rsc low)* *(<counter>)* | The indicated multicast flow is not routing. The routing switch is low on memory resources as a result of too many flows for the number of configured VLANs. Remedies include one or more of the following:
 - Reduce the number of configured VLANs by moving some VLANs to another router.
 - Free up system resources by disabling another feature, such as one of the spanning-tree protocols or either the RIP or the OSPF routing protocol. (Unless you are using static routes, you will need to retain a minimum of one unicast routing protocol.) Another option that may help is to reduce the number of configured QoS filters.
 - Move some hosts that create multicast demand to another router. |
| MCAST MAC add for `<mac-address>` failed *(<counter>)* | Indicates a hardware problem. Check the cabling and router ports. |
| Multicast Hardware Failed to Initialize *(<counter>)* | Indicates a hardware failure that halts hardware processing of PIM traffic. The software will continue to process PIM traffic at a slower rate. Contact your ProCurve customer care center. |
| No IP address configured on VID `<vlan-id>` *(<dup-msg-cnt>)* | PIM has detected a VLAN without an IP address. Configure an IP address on the indicated VLAN. |
| Pkt dropped from `<ip-address>`, *(<cause>)* vid `<vlan-id>` *(<counter>)* | A PIM packet from `<ip-address>` was dropped due to one of the following causes:
 - No PIM interface on the VLAN
 - Bad packet length
 - Bad IP header length
 - Bad IP total length |
| Pkt rcvd with a cksum error from `<ip-addr>` *(<counter>)* | A packet having a checksum error was received from `<ip-addr>`. Check the cabling and ports on the local and the remote routers. |
| Rcvd incorrect hello from `<ip-addr>` *(<counter>)* | Indicates receipt of a malformed hello packet. (That is, the packet does not match the current specification.) Ensure that compatible versions of PIM-DM are being used. |
| Rcvd `<text-str>` pkt with bad len from `<ip-addr>` *(<counter>)* | A peer router may be sending incorrectly formatted PIM packets. |
| Rcvd hello from `<ip-address>` on vid `<vlan-id>` *(<counter>)* | Indicates a misconfiguration where two routers are directly connected with different subnets on the same connected interface. |
PIM-DM (Dense Mode)
Messages Related to PIM Operation

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcvd pkt from rtr <code><ip-address></code>, unkwn pkt type <code><value></code> (<counter>)</td>
<td>A packet received from the router at <code><ip-address></code> is an unknown PIM packet type. (The <code><value></code> variable is the numeric value received in the packet.)</td>
</tr>
<tr>
<td>Rcvd pkt ver# <code><ver-num></code>, from <code><ip-address></code>, expected <code><ver-num></code> (<counter>)</td>
<td>The versions of PIM-DM on the sending and receiving routers do not match. Differing versions will typically be compatible, but features not supported in both versions will not be available.</td>
</tr>
<tr>
<td>Rcvd unkwn addr fmly <code><addr-type></code> in <code><text-str></code> pkt from <code><ip-addr></code> (<counter>)</td>
<td>The router received a PIM packet with an unrecognized encoding. As of February, 2004, the router recognizes IPv4.</td>
</tr>
<tr>
<td>Rcvd unkwn opt <code><opt-nbr></code> in <code><text-string></code> pkt from <code><ip-addr></code> (<counter>)</td>
<td>The router received a PIM packet carrying an unknown PIM option. The packet may have been generated by a newer version of PIM-DM, or is corrupt. In most cases, normal PIM-DM operation will continue.</td>
</tr>
<tr>
<td>Send error(<<code>failure-type</code>>) on <code><packet-type></code> pkt on VID <code><vid></code> (<counter>)</td>
<td>Indicates a send error on a packet. This can occur if a VLAN went down right after the packet was sent. The message indicates the failure type, the packet type, and the VLAN ID on which the packet was sent.</td>
</tr>
</tbody>
</table>
| Unable to alloc `<text-str>` table (<counter>) | The router was not able to create some tables PIM-DM uses. Indicates that the router is low on memory resources. Remedies include one or more of the following:
 - Reduce the number of configured VLANs by moving some VLANs to another router.
 - Free up system resources by disabling another feature, such as one of the spanning-tree protocols or either the RIP or the OSPF routing protocol. (Unless you are using static routes, you will need to retain a minimum of one unicast routing protocol.) Another option that may help is to reduce the number of configured QoS filters.
 - Move some hosts that create multicast demand to another router. |
| Unable to alloc a buf of size `<bytes>` for `<data-flow>` (<counter>) | Multicast routing is unable to acquire memory for a flow. Router memory is oversubscribed. Reduce the number of VLANs or the number of features in use. Remedies include one or more of the following:
 - Reduce the number of configured VLANs by moving some VLANs to another router.
 - Free up system resources by disabling another feature, such as one of the spanning-tree protocols or either the RIP or the OSPF routing protocol. (Unless you are using static routes, you will need to retain a minimum of one unicast routing protocol.) Another option that may help is to reduce the number of configured QoS filters.
 - Move some hosts that create multicast demand to another router. |
Unable to alloc a msg buffer for \(<\text-message>\) \(<\text-counter>\)

Multicast routing is unable to acquire memory for a flow. Router memory is oversubscribed. Reduce the number of VLANs or the number of features in use. Remedies include one or more of the following:

- Reduce the number of configured VLANs by moving some VLANs to another router.
- Free up system resources by disabling another feature, such as one of the spanning-tree protocols or either the RIP or the OSPF routing protocol. (Unless you are using static routes, you will need to retain a minimum of one unicast routing protocol.) Another option that may help is to reduce the number of configured QoS filters.
- Move some hosts that create multicast demand to another router.

Applicable RFCs

PIM on the switches covered in this guide is compatible with these RFCs:

- RFC 3376 - Internet Group Management Protocol, Version 3
- RFC 2365 - Administratively Scoped IP Multicast
- RFC 2932 - Multicast Routing MIB, with exceptions (Refer to "Exceptions to Support for RFC 2932 - Multicast Routing MIB".)
- RFC 2933 - IGMP MIB
- RFC 2934 - Protocol Independent Multicast MIB for IPv4
- draft-ietf-ssm-arch-01.txt - Source-Specific Multicast for IP (draft specification, expires May 2003)
Exceptions to Support for RFC 2932 - Multicast Routing MIB

These MIB objects are not supported in the switches covered in this guide.

- ipMRouteInterfaceRateLimit
- ipMRouteInterfaceInMcastOctets
- ipMRouteInterfaceOutMcastOctets
- ipMRouteInterfaceHCInMcastOctets
- ipMRouteInterfaceHCOutMcastOctets
- ipMRouteBoundaryTable
- ipMRouteBoundaryEntry
- ipMRouteBoundaryIfIndex
- ipMRouteBoundaryAddress
- ipMRouteBoundaryAddressMask
- ipMRouteBoundaryStatus
- OBJECT-TYPE
- ipMRouteScopeNameTable
- ipMRouteScopeNameEntry
- ipMRouteScopeNameAddress
- ipMRouteScopeNameAddressMask
- ipMRouteScopeNameLanguage
- ipMRouteScopeNameString
- ipMRouteScopeNameDefault
- ipMRouteScopeNameStatus
PIM-SM (Sparse Mode)

Contents

Introduction ... 4-4
Feature Overview ... 4-5
Terminology ... 4-6
PIM-SM Operation and Router Types 4-9
 PIM-SM Operation .. 4-9
 Rendezvous-Point Tree (RPT) 4-9
 Shortest-Path Tree (SPT) 4-10
 Restricting Multicast Traffic to Rendezvous-Point Trees (RPTs) ... 4-11
 Maintaining an Active Route for Multicast Group Members .. 4-11
 Border Routers and Multiple PIM-SM Domains ... 4-12
 PIM-SM Router Types ... 4-12
 Designated Router (DR) .. 4-12
 Bootstrap Router (BSR) 4-13
 Rendezvous Point (RP) .. 4-14
 Static Rendezvous Point (Static-RP) 4-17
Operating Rules and Recommendations 4-19
Configuration Steps for PIM-SM .. 4-20
 Planning Considerations ... 4-20
 Per-Router Global Configuration Context 4-20
 Per-VLAN PIM-SM Configuration 4-21
 Router PIM Configuration .. 4-23
Configuring PIM-SM on the Router 4-25
 Global Configuration Context for Supporting PIM-SM 4-26
 Global Configuration Context Commands 4-26
 Example of Configuring for PIM Support at the Global Level .. 4-27
 VLAN Context Commands for Configuring PIM-SM 4-28
 Enabling or Disabling IGMP in a VLAN 4-28
Enabling or Disabling PIM-SM Per-VLAN 4-29
Changing the Interval for PIM-SM Neighbor Notification 4-30
Changing the Randomized Delay Setting for
PIM-SM Neighbor Notification 4-31
Changing the PIM-SM Neighbor Timeout Interval 4-31
Enabling or Disabling LAN Prune Delay 4-32
Changing the LAN-Prune-Delay Interval 4-33
Changing the DR (Designated Router) Priority 4-33
Example of Configuring PIM-SM Support in a VLAN Context 4-34

Router PIM Context Commands for Configuring PIM-SM Operation 4-35
Configuring a BSR Candidate 4-35
Configuring Candidate-RPs on PIM-SM Routers 4-37
Enabling, Disabling, or Changing Router PIM
Notification Traps ... 4-41
Changing the Global Join-Prune Interval on the Router 4-42
Changing the Shortest-Path Tree (SPT) Operation 4-42
Statically Configuring an RP To Accept Multicast Traffic 4-42
Example of Configuring PIM-SM Support in the
Router PIM Context ... 4-43

Displaying PIM-SM Data and Configuration Settings 4-46
Displaying Multicast Route Data 4-47
Listing Basic Route Data for Active Multicast Groups 4-47
Listing Data for an Active Multicast Group 4-48
Listing All VLANs Having Currently Active PIM Flows 4-50
Displaying PIM-Specific Data 4-51
Displaying the Current PIM status and Global Configuration 4-51
Displaying Current PIM Entries Existing In the Multicast
Routing Table ... 4-52
Displaying a Specific PIM Entry Stored in the Multicast
Routing Table .. 4-53
Listing Currently Configured PIM Interfaces 4-55
Displaying IP PIM VLAN Configurations 4-55
Displaying PIM Neighbor Data 4-57
Displaying BSR Data ... 4-59
Displaying BSR Status and Configuration 4-59
Listing Non-Default BSR Configuration Settings 4-60
Displaying the Current RP Set .. 4-61
Displaying Candidate-RP Data 4-63
 Displaying the Router's Candidate-RP Status
 and Configuration .. 4-63
 Listing Non-Default C-RP Configuration Settings 4-64
Operating Notes ... 4-65
Event Log Messages ... 4-66
Introduction

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable PIM-SM Support</td>
<td>Disabled</td>
<td>4-26</td>
</tr>
<tr>
<td>Configure PIM-SM on VLAN Interfaces</td>
<td>Disabled</td>
<td>4-28</td>
</tr>
<tr>
<td>Configure Router PIM Context</td>
<td>Disabled</td>
<td>4-35</td>
</tr>
<tr>
<td>Bootstrap Router Candidate</td>
<td></td>
<td>4-37</td>
</tr>
<tr>
<td>Rendezvous-Point Candidate</td>
<td></td>
<td>4-41</td>
</tr>
<tr>
<td>Notification Traps</td>
<td></td>
<td>4-42</td>
</tr>
<tr>
<td>Shortest-Path Tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display Multicast Route Data</td>
<td>n/a</td>
<td>4-47</td>
</tr>
<tr>
<td>Display PIM-Specific Data</td>
<td>n/a</td>
<td>4-51</td>
</tr>
<tr>
<td>Display PIM Neighbor Data</td>
<td>n/a</td>
<td>4-57</td>
</tr>
<tr>
<td>Display BSR and C-RP Data</td>
<td>n/a</td>
<td>4-59</td>
</tr>
<tr>
<td>Display Current RP-Set</td>
<td>n/a</td>
<td>4-61</td>
</tr>
<tr>
<td>Display Candidate-RP Data</td>
<td>n/a</td>
<td>4-63</td>
</tr>
</tbody>
</table>

In a network where IP multicast traffic is transmitted for multimedia applications, such traffic is blocked at routed interface (VLAN) boundaries unless a multicast routing protocol is running. Protocol Independent Multicast (PIM) is a family of routing protocols that form multicast trees to forward traffic from multicast sources to subnets that have used a protocol such as IGMP to request the traffic. PIM relies on the unicast routing tables created by any of several unicast routing protocols to identify the path back to a multicast source (reverse path forwarding, or RPF). With this information, PIM sets up the distribution tree for the multicast traffic. The PIM-DM and PIM-SM protocols on the switches covered by this manual enable and control multicast traffic routing.

IGMP provides the multicast traffic link between a host and a multicast router running PIM-SM. Both PIM-SM and IGMP must be enabled on VLANs whose member ports have directly connected hosts with a valid need to join multicast groups.

PIM-DM (described in chapter 3) is used in networks where, at any given time, multicast group members exist in relatively large numbers and are present in most subnets. However, using PIM-DM in networks where multicast sources
and group members are sparsely distributed over a wide area can result in unnecessary multicast traffic on routers outside the distribution paths needed for traffic between a given multicast source and the hosts belonging to the multicast group. In such networks, PIM-SM can be used to reduce the effect of multicast traffic flows in network areas where they are not needed. And because PIM-SM does not automatically flood traffic, it is a logical choice in lower bandwidth situations.

Feature Overview

PIM-SM on the routers covered by this manual includes:

- **Routing Protocol Support**: PIM uses whichever IP unicast routing protocol is running on the router. These can include:
 - RIP
 - OSPF
 - static routes
 - directly connected interfaces

- **VLAN Interface Support**: Up to 511 outbound VLANs (and 1 inbound VLAN) are supported in the multicast routing table (MRT) at any given time. This means the sum of all outbound VLANs across all current flows on a router may not exceed 511. (A single flow may span one inbound VLAN and up to 511 outbound VLANs, depending on the VLAN memberships of the hosts actively belonging to the flow.)

- **Flow Capacity**: Up to 2048 flows are supported in hardware across a maximum of 512 VLANs. (A flow is composed of an IP source address and an IP multicast group address, regardless of the number of active hosts belonging to the multicast group at any given time.)

- **Multicast Group to Rendezvous Point (RP) Mapping**: PIM-SM uses the Bootstrap Router (BSR) protocol to automatically resolve multicast group addresses to Candidate-RP routers. In the current software release, a router administers BSR operation on a PIM-SM domain basis. (BSR zones and PIM border router operation are not currently supported by the software covered in this guide.) Note that BSR operation does not extend to statically configured RPs. (For more on this topic, refer to “Static Rendezvous Point (Static-RP)” on page 4-17.)
PIM-SM (Sparse Mode)
Terminology

- **IGMP Compatibility:** PIM-SM is compatible with IGMP version 2, and is fully interoperable with IGMP for determining multicast flows.

- **VRRP:** PIM-SM is fully interoperable with VRRP to quickly transition multicast routes in the event of a failover.

- **MIB Support on the Routers Covered by this Guide:**
 - With some exceptions, PIM-SM supports the parts of the Multicast Routing MIB (RFC 2932) applicable to PIM-SM operation. (Refer to “Exceptions to Support for RFC 2932 - Multicast Routing MIB” on page 3-42.)

- **PIM Draft Specifications:** Compatible with PIM-SM draft specification (RFC 2362, version 10).

Terminology

Bootstrap Router (BSR). In a given PIM-SM domain, the BSR is the router elected to distribute the RP-set to the candidate rendezvous points (C-RPs) in a PIM-SM domain. The BSR does not interact with static rendezvous points (static-RPs). For more information on BSRs, refer to “Bootstrap Router (BSR)” on page 4-13. See also “RP-Set”, below.

Bootstrap Message (BSM): A message sent from the current BSR to the other PIM-SM routers in the domain to distribute the current RP-set and the status of the sending BSR as the current bootstrap router.

Candidate Rendezvous Point (C-RP): A PIM-SM router configured as the distribution point for all traffic from a multicast traffic source to a particular multicast group (destination). Multiple C-RPs can be configured to support the same multicast group, but only one C-RP will be elected to actually distribute the traffic for that group. (See also Rendezvous Point, page 4-7.)

Dynamic RP: A PIM-SM router configured as a Candidate Rendezvous Point (C-RP).

C-RP: See Candidate Rendezvous Point, above.
Designated Router (DR): Within a given VLAN or network, the router elected to forward a multicast flow from its IP source (in the VLAN or network) to the appropriate rendezvous point (either an RP or static-RP) in the PIM-SM domain.

Edge Router: Any router directly connected to a host or other endpoint in the network.

Flow: Multicast traffic having one source and one multicast group address (destination). This traffic may reach many hosts in different subnets, depending on which hosts have issued joins for the same multicast group.

Multicast Source: A single device originating multicast traffic for other devices (receivers).

Prune: To eliminate branches of a multicast tree that have no hosts sending joins to request or maintain membership in that particular multicast group.

Rendezvous Point (RP): A router that is either elected from a pool of eligible C-RPs (dynamic RPs) or statically configured (static RP) to support the distribution of traffic for one or more multicast groups and/or ranges of multicast groups. The RP for a given multicast group receives that group’s traffic from a DR on the VLAN receiving the traffic from a multicast traffic source. The RP then forwards the traffic to downstream edge or intermediate PIM-SM routers in the path(s) to the requesting hosts (end points). (See also Candidate Rendezvous Point, page 4-6).

Rendezvous Point Tree (RPT): The path extending from the DR through any intermediate PIM-SM routers leading to the PIM-SM edge router(s) for the multicast receiver(s) requesting the traffic for a particular multicast group. (Refer to “Rendezvous-Point Tree (RPT)” on page 4-9.)

Reverse Path Forwarding (RPF): This is a methodology that uses the unicast routing table created by IP protocols such as RIP and OSPF to determine the source address of a packet. PIM uses RPF to set up distribution trees for multicast traffic.

Router: In the context of this chapter, a router is any ProCurve switch model covered by this guide and configured with IP routing enabled.

Routing Switch: See Router, above.

RP: See Rendezvous Point, above.
RPT: See Rendezvous Point Tree.

RP-Set: A complete list of multicast-group-to-RP mappings the BSR has learned and distributed to the C-RPs in a given PIM-SM domain. The learned RP-set applies only to C-RPs, and not to static-RPs. (Note, however, that the `show ip pim rp-set` command lists both the learned RP-set from the BSR and any static-RPs configured on the router.)

Shortest Path Tree (SPT): The shortest path from the DR through any intermediate PIM-SM routers leading to the PIM-SM edge router(s) for the multicast receiver(s) requesting the traffic for a particular multicast group. Unless the RPT is in this path, it is excluded from the SPT. (Refer to “Shortest-Path Tree (SPT)” on page 4-10.)

SPT: See Shortest Path Tree.

Static Rendezvous Point (Static-RP). A PIM-SM router manually configured as the distribution point for a multicast group or range of contiguous groups. (Refer to “Static Rendezvous Point (Static-RP)” on page 4-17.)
PIM-SM Operation and Router Types

Unlike PIM-DM, PIM-SM assumes that most hosts do not want to receive multicast traffic, and uses a non-flooding multicast model to direct traffic for a particular multicast group from the source to the VLAN(s) where there are multicast receivers that have joined the group. As a result, this model sends traffic only to the routers that specifically request it.

PIM-SM Operation

In a given PIM-SM domain, routers identified as Designated Routers (DRs), Rendezvous Points (RPs), and a Bootstrap Router (BSR) participate in delivering multicast traffic to the IP multicast receivers that request it. This approach avoids the flooding method of distributing multicast traffic (employed by PIM-DM) and is best suited for lower bandwidth situations.

The software supports the following operation to enable multicast traffic delivery within a PIM-SM domain:

- From a pool of eligible DR candidates in each VLAN, one Designated Router (DR) is elected for each VLAN interface having at least one PIM-SM router. In a multinetted domain, this DR supports multicast traffic from a source on any subnet in the VLAN.
- From a pool of eligible Bootstrap Router (BSR) candidates in the domain, one BSR is elected for the entire domain.
- From a pool of eligible Candidate Rendezvous Points (C-RPs), one is elected to support each multicast group or range of groups allowed in the domain, excluding any group supported only by static-RPs. The multicast groups allowed in the domain are determined by the aggregation of the groups allowed by the individually configured RPs and any static-RPs. (Note that RP-Cs and static RP's can be configured with overlapping support for a given set of multicast groups.)

Rendezvous-Point Tree (RPT)

When a DR in a VLAN receives traffic for a particular multicast group from a source on that VLAN, the DR encapsulates the traffic and forwards it to the RP elected to support that multicast group. The RP decapsulates the traffic and forwards it on toward the multicast receiver(s) requesting that group. This forms a Rendezvous Point Tree (RPT) extending from the DR through any
intermediate PIM-SM routers leading to the PIM-SM edge router(s) for the multicast receiver(s) requesting the traffic. (If the RP has no current join requests for the group, then the traffic is dropped at the RP.)

![Figure 4-1. Example PIM-SM Domain with RPT Active To Support a Host Joining a Multicast Group]

Shortest-Path Tree (SPT)

SPTs are especially useful in high data rate applications where reducing unnecessary traffic concentrations and throughput delays are significant. In the default PIM-SM configuration, SPT operation is automatically enabled. (The software includes an option to disable SPT operation. Refer to “Changing the Shortest-Path Tree (SPT) Operation” on page 4-42.)

Shortest-Path Tree Operation. In the default PIM-SM configuration, after an edge router receives the first packet of traffic for a multicast group requested by a multicast receiver on that router, it uses Reverse Path Forwarding (RPF) to learn the shortest path to the group source. The edge router then stops using the RPT and begins using the shortest path tree (SPT) connecting the multicast source and the multicast receiver. In this case, when the edge router begins receiving group traffic from the multicast source through the SPT, it sends a prune message to the RP tree to terminate sending the requested group traffic on that route. (This results in entries for both the RP path and the STP in the routing table. Refer to “Routing Table Entries” on
When completed, the switchover from the RPT to a shorter SPT can reduce unnecessary traffic concentrations in the network and reduce multicast traffic throughput delays.

Note that the switchover from RPT to SPT is not instantaneous. For a short period, packets for a given multicast group may be received from both the RPT and the SPT. Also, in some topologies, the RPT and the SPT to the same edge router may be identical.

In default PIM-SM operation, the STP path activates and the RPT path drops off after the first multicast packet for a group is received via the Rendezvous Point (RP).

Restricting Multicast Traffic to Rendezvous-Point Trees (RPTs)

An alternate method to allowing the domain to use SPTs is to configure all of the routers in the domain to use only RPTs. However, doing so can increase the traffic load in the network and cause delays in packet delivery.

Maintaining an Active Route for Multicast Group Members

The edge router itself and any intervening routers on the active tree between the members (receivers) of a multicast group and the DR for that group, send periodic joins. This keeps the active route available for as long as there is a multicast receiver requesting the group. When a route times out or is pruned, the DR ceases to send the requested group traffic on that route.
Border Routers and Multiple PIM-SM Domains

Creating multiple domains enables a balancing of PIM-SM traffic within a network. Defining PIM-SM domain boundaries requires the use of PIM border routers (PMBRs), and multiple PMBRs can be used between any two domains.

Note

As of March 2006, the software covered by this guide does not support PMBR operation for PIM-SM networks.

PIM-SM Router Types

Within a PIM-SM domain, PIM-SM routers can be configured to fill one or more of the roles described in this section.

- **Designated Router (DR):** A router performing this function forwards multicast traffic from a unicast source to the appropriate distribution (rendezvous) point. Refer to “Designated Router (DR)”, below.

- **Bootstrap Router (BSR):** A router elected to this function keeps all routers in a PIM-SM domain informed of the currently assigned RP for each multicast group currently known in the domain. Refer to “Bootstrap Router (BSR)” on page 4-13.

- **Rendezvous Point (RP):** A router elected as a rendezvous point for a multicast group receives requested multicast traffic from a DR and forwards it toward the multicast receiver(s) requesting the traffic. Refer to “Rendezvous Point (RP)” on page 4-14.

- **Static Rendezvous Point (Static-RP):** This option forwards traffic in the same way as an RP, but requires manual configuration on all routers in the domain to be effective.

All of the above functions can be enabled on each of several routers in a PIM-SM domain. For more information, refer to the following sections.

Designated Router (DR)

In a VLAN populated by one or more routers running PIM-SM, one such router is elected the **Designated Router** (DR) for that VLAN. When the DR receives a Join request from a multicast receiver on that VLAN, it forwards the Join towards the router operating as the RP for the requested multicast group.

Where multiple PIM-SM routers exist in a VLAN, the following criteria is used to elect a DR:

1. The router configured with the highest DR priority in the VLAN is elected.
2. If multiple routers in the VLAN are configured with the highest DR priority, then the router having the highest IP address is elected.

In a given domain, each VLAN capable of receiving multicast traffic from a unicast source should have at least one DR. (Enabling PIM-SM on a VLAN automatically enables the router as a DR for that VLAN.) Because there is an election process for DR on each VLAN, it is generally recommended that all routers on a VLAN be enabled for DR. Where it is important to ensure that a particular router is elected as the DR for a given VLAN, you can increase the DR priority on that VLAN configuration for that router.

If it is necessary to prevent a router from operating as a DR on a given VLAN, disable DR operation by configuring the DR priority as 0 (zero).

Bootstrap Router (BSR)

Before a DR can forward encapsulated packets for a specific multicast group to an RP, it must know which router in the domain is the elected RP for that multicast group. The bootstrap router (BSR) function enables this operation by doing the following:

1. Learns the group-to-RP mappings on the Candidate Rendezvous Points (C-RPs) in the domain by reading the periodic advertisements each one sends to the BSR.

2. Distributes the aggregate C-RP information as an *RP-set* to the PIM-SM routers in the domain. This is followed by an election to assign a specific multicast group or range of groups to the C-RPs in the domain. (The software supports assignment of up to four multicast addresses and/or ranges of multicast addresses to a C-RP.)

The BSR periodically sends bootstrap messages to the other PIM-SM routers in the domain to maintain and update the RP-set data throughout the domain, and to maintain its status as the elected BSR.

Note

Where static RPs are configured in the domain to support the same multicast group(s) as one or more (dynamic) C-RPs, then the RP-set data has the precedence for assigning RPs for these groups unless the static-RPs have been configured with the *override* option and if the multicast group mask for the static-RP equals or exceeds the same mask for the applicable C-RP(s). Refer to the **Note** on page 4-17.

BSR Configuration and Election. There should be multiple BSR candidates configured in a PIM-SM domain so that if the elected BSR becomes unavailable, another router will take its place. In the BSR election process,
the BSR candidate configured with the highest priority number is selected. Where the highest priority setting is shared by multiple candidates, the candidate having the highest IP address is selected. In the event that the selected BSR subsequently fails, another election takes place among the remaining BSR candidates. To facilitate a predictable BSR election, configure a higher priority on the router you want elected as the BSR for the domain. (Refer to “Changing the Priority Setting for a BSR-Candidate Router” on page 4-36.)

Note

A router serving as the BSR for a domain should be central to the network topology. This will help to ensure optimal performance and also reduce the possibility of a network problem isolating the BSR.

BSR Role in Fault Recovery. If the hold-time maintained in the BSR for a given C-RP’s latest advertisement expires before being refreshed by a new advertisement from the C-RP, then the non-reporting C-RP is removed from the domain. In this case, the removed C-RP’s multicast groups are re-assigned to other C-RPs. (If no other C-RPs or static-RPs in the domain are configured to support a multicast group from the non-reporting C-RP, then that group becomes unavailable in the domain.)

Rendezvous Point (RP)

Instead of flooding multicast traffic as is done with PIM-DM, PIM-SM uses a set of multiple routers to operate as *rendezvous points* (RPs). Each RP controls multicast traffic forwarding for one or more multicast groups as follows:

- receives traffic from multicast sources (S) via a DR
- receives multicast joins from routers requesting multicast traffic
- forwards the requested multicast traffic to the requesting routers

Note that the routers requesting multicast traffic are either edge routers directly connected to specific multicast receivers using IGMP to request the traffic, or are intermediate routers on the path between the edge routers and the RP. This operation forms an *RP Tree* (RPT) where only the destination multicast address appears in the RP routing table. This is represented as follows:

\[(*, G)\], where:

- \(* = \) a variable (wildcard) representing the IP address of any multicast source
- \(G = \) a particular multicast group address.

The software supports up to 100 RPs in a given PIM-SM domain.
Defining Supported Multicast Groups. An RP in the default candidate configuration supports the entire range of possible multicast groups. This range is expressed as a multicast address and mask, where the mask defines whether the address is for a single address or a range of contiguous addresses:

<table>
<thead>
<tr>
<th>Multicast Address</th>
<th>Mask</th>
<th>Address Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.0.0.0</td>
<td>240.0.0.0</td>
<td>224.0.0.0 - 239.255.255.255</td>
</tr>
</tbody>
</table>

An alternate way to express the above (default) address and mask is:

224.0.0.0/4

In non-default candidate configurations, an RP allows up to four ranges of contiguous multicast groups, and/or individual multicast groups. For example:

<table>
<thead>
<tr>
<th>RP Candidate Configuration</th>
<th>Supported Range of Multicast Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>235.0.240.0/12</td>
<td>235.0.240.1 - 235.0.255.255</td>
</tr>
<tr>
<td>235.0.0.1/28</td>
<td>235.0.0.1 - 235.0.0.15</td>
</tr>
<tr>
<td>235.0.0.128/32</td>
<td>235.0.0.128 only</td>
</tr>
<tr>
<td>235.0.0.77/32</td>
<td>235.0.0.77 only</td>
</tr>
</tbody>
</table>

Note

If a given multicast group is excluded from all RPs in a given domain, then that group will not be available to the multicast receivers connected in the domain.

For more on this topic, refer to “Configuring Candidate-RPs on PIM-SM Routers” on page 4-37.

Candidate-RP Election. Within a PIM-SM domain, different RPs support different multicast addresses or ranges of multicast addresses. (That is, a given PIM-SM multicast group or range of groups is supported by only one active RP, although other candidate RPs can also be configured with overlapping or identical support.)

A candidate RP’s group-prefix configuration identifies the multicast groups the RP is enabled to support.

If multiple candidate RPs have group prefixes configured so that any of these RPs can support a given multicast group, then the following criteria are used to select the RP to support the group:
1. The C-RP configured with the longest group-prefix mask applicable to the multicast group is selected to support the group. If multiple RP candidates meet this criterion, then step 2 applies.

2. The C-RP configured with the highest priority is selected. If multiple RP candidates meet this criterion, then step 3 applies.

3. A hash function (using the configured `bsr-candidate hash-mask-length` value) generates a series of mask length values that are individually assigned to the set of eligible C-RPs. If the hash function matches a single RP candidate to a longer mask length than the other candidates, that candidate is selected to support the group. If the hash function matches the longest mask length to multiple RP candidates, then step 4 applies.

4. The C-RP having the highest IP address is selected to support the group.

Notes

In a PIM-SM domain where there are overlapping ranges of multicast groups configured on the C-RPs, discrete ranges of these groups are assigned to the domain’s C-RPs in blocks of sequential group numbers. The number of multicast groups in the blocks assigned within a given domain is determined by the `bsr-candidate hash-mask-length` value (range = 1 - 32; page 4-36) configured on the elected BSR for the domain. A higher value means fewer sequential group numbers in each block of sequential group numbers, which results in a wider dispersal of multicast groups across the C-RPs in the domain.

As indicated above, multiple C-RPs can be configured to support the same multicast group(s). This is the generally recommended practice, and results in redundancy that helps to prevent loss of support for desired multicast groups in the event that a router in the domain becomes unavailable.

Configuring a C-RP to support a given multicast group does not ensure election of the C-RP to support that group unless the group is excluded from all other RPs in the domain. Refer to “” on page 4-16.

Also, within a PIM-SM domain, a router can be configured as a C-RP available for a given multicast group or range of groups and as the static RP for a given multicast group or range of groups. The recommended practice is to use C-RPs for all multicast groups unless there is a need to ensure that a specific group or range of groups is always supported by the same routing switch. For more on this topic, refer to “Static Rendezvous Point (Static-RP)” on page 4-17.
Redundant Group Coverage Provides Fault-Tolerance. If a C-RP elected to support a particular multicast group or range of groups becomes unavailable, the router will be excluded from the RP-set. If the multicast group configuration of one or more other C-RPs overlaps the configuration in the failed RP, then another C-RP will be elected to support the multicast group(s) formerly relying on the failed RP.

Static Rendezvous Point (Static-RP)

General Application. Like C-RPs, static-RPs control multicast forwarding of specific multicast groups or ranges of contiguous groups. However, static-RPs are not dynamically learned, and increase the configuration and monitoring effort needed to maintain them. As a result static-RPs are not generally recommended for use except where one of the following conditions applies:

- It is desirable to designate a specific router interface as a backup RP for specific group(s).
- Specific multicast groups are expected, and a static-RP would help to avoid overloading a given RP with a high volume of multicast traffic.
- A C-RP for the same group(s) is less reliable than another RP that would not normally be elected to support the group(s).
- Tighter traffic control or a higher priority is desired for specific multicast groups

Notes

While use of C-RPs and a BSR enable a dynamic selection of RPs for the multicast group traffic in a network, using static-RPs involves manually configuring all routers in the domain to be aware of each static RP. This can increase the possibility of multicast traffic failure due to misconfigurations within the PIM-SM domain. Also, because a BSR does not administer static-RPs, troubleshooting PIM-SM traffic problems can become more complex. For these reasons, use of static-RPs should be limited to applications where no viable alternatives exist, or where the network is stable and requires configuring and maintaining only a few routers.

If a static-RP operating as the primary RP for a multicast group fails, and the PIM-SM configuration in the domain does not include a (secondary) dynamic RP (C-RP) backup to the static-RP, then new multicast groups assigned to the static-RP will not be available to multicast receivers in the domain. Also, if a static-RP fails, support for existing groups routed through SPTs that exclude the failed router will continue, but any existing flows routed through the RPT will fail.
Supporting a Static-RP as Primary. A static-RP can be configured to operate as either a secondary or primary RP. With the primary option, a dynamic (C-RP) backup is recommended. The precedence of a static-RP over a dynamic RP is determined by the following static-RP configuration options:

- **override** enabled on the static-RP
- a group mask on the static-RP that equals or exceeds the group mask on the C-RP for the same multicast group(s)

For **override** configuration information, refer to “Statically Configuring an RP To Accept Multicast Traffic” on page 4-42.

Operating Rules for Static RPs.

- Static-RPs can be configured on the same routers as C-RPs.
- Where a C-RP and a static-RP are configured to support the same multicast group(s), the C-RP takes precedence over the static-RP unless the static-RP is configured to override the C-RP. (Refer to “Supporting a Static-RP as Primary”, above.)
- Any static-RP in a domain must be configured identically on all routers in the domain. Otherwise, some DRs will not know of the static-RP and will not forward the appropriate multicast traffic, and some routers will not know where to send Joins for the groups supported by static-RP.
- Up to four static-RP entries can be configured on a router. Each entry can be for either a single multicast group or a range of contiguous groups.
- Only one interface can be configured as the static RP for a given multicast group or range of groups. For example, a properly configured PIM-SM domain does not support configuring 10.10.10.1 and 10.20.10.1 to both support a multicast group identified as 239.255.255.10.
- Static-RPs are not included in the RP-set messages generated by the BSR, and do not generate advertisements.
- If a static-RP becomes unavailable, it is necessary to remove and/or replace the configuration for this RP in all routers in the domain.

Configuration. Refer to “Statically Configuring an RP To Accept Multicast Traffic” on page 4-42.
Operating Rules and Recommendations

Guideline for Configuring Candidate RPs and BSRs. Routers in a PIM-SM domain should usually be configured as both candidate RPs and candidate BSRs. Doing so can reduce some overhead traffic.

The Shortest-Path-Tree (SPT) Policy Should Be the Same for All RPs in a Domain. Allowing some RPs to remain configured to implement STPs while configuring other RPs in the same domain to force RPT use can result in unstable traffic flows. (Use the `no ip pim-sparse spt-threshold` command to change between SPT and RPT operation on each router.)

Application of RPs to Multicast Groups. In a PIM-SM domain, a given multicast group or range of groups can be supported by only one RP. (Typically, multiple candidate RPs in a domain are configured with overlapping coverage of multicast groups, but only one such candidate will be elected to support a given group.)

Ensuring that the Candidate RPs in a PIM-SM Domain Cover All Desired Multicast Groups. All of the multicast groups you want to allow in a given PIM-SM domain must be included in the aggregate of the multicast groups configured in the domain’s candidate RPs. In most cases, all C-RPs in a domain should be configured to support all RP groups (the default configuration for a router enabled as a C-RP). This provides redundancy in case an RP becomes unavailable. (If the C-RP supporting a particular multicast group becomes unavailable, another C-RP is elected to support the group as long as there is redundancy in the C-RP configuration for multiple routers. Note that in cases where routers are statically configured to support a specific group or range of groups, the C-RP prioritization mechanism allows for redundant support.)

PIM-SM and PIM-DM. These two features cannot both be enabled on the same router at the same time.

Supporting PIM-SM Across a PIM Domain. To properly move multicast traffic across a PIM-SM domain, all routers in the domain must be configured to support PIM-SM. That is, a router without PIM-SM capability blocks routed multicast traffic in a PIM-SM domain.
Configuration Steps for PIM-SM

This process assumes that the necessary VLANs and IP addressing have already been configured on the routing switch.

Note

The switches covered by this guide do not support PMBR operation in the current software release.

Planning Considerations

- Where multiple routers are available to operate as the DR for a given source, set the DR priority on each router according to how you want the router used.
- Determine whether there are any bandwidth considerations that would call for disabling SPT operation. (If any routers in the domain have SPT operation disabled, then it should be disabled on all RPs in the domain. Refer to “Operating Rules and Recommendations” on page 4-19.)
- Determine the routers to configure as C-BSRs. In many applications, the best choice may be to configure all routers in the domain as candidates for this function.
- Determine the multicast group support you want on each C-RP and any static-RPs in the domain. The easiest option is to enable C-RP to support all possible multicast groups on all routers in the domain. However, if there are traffic control considerations you want to apply, you can limit specific multicast groups to specific routers and/or set priorities so that default traffic routes support optimum bandwidth usage.

Per-Router Global Configuration Context

Use these steps to enable routing and PIM operation in the global configuration context of each PIM-SM router (ProCurve(config)#)

1. Enable routing. (Use ip routing.)
2. Enable multicast routing. (Use ip multicast-routing.)
3. Enable PIM. (Use router pim.)
4. Configure the routing method(s) needed to reach the interfaces (VLANS) on which you want multicast traffic available for multicast receivers in your network:
PIM-SM (Sparse Mode)
Configuration Steps for PIM-SM

• Enable RIP or OSPF (Use `router < rip | ospf >`.)
• If desired, configure static routes to the destination subnets.
 (Use `ip route < dest-ip-address >/< mask-bits > < next-hop-ip-addr >`.)

Per-VLAN PIM-SM Configuration

These steps configure PIM-SM in the VLAN interface context for each VLAN configured on the router `(ProCurve(vlan-< vid >)#__)`.

1. Enable IGMP. (Use `ip igmp`.) Repeat this action on every router (and switch) having membership in the VLAN.

2. Enable the same routing method you enabled in step 4 under “Per-Router Global Configuration Context” on page 4-20, at both the global and VLAN levels on the routers where there are connected multicast receivers that may issue joins or send multicast traffic.

3. Enable PIM-SM on the VLAN interfaces where you want to allow routed multicast traffic. (Default: disabled)
 a. If these VLANs do not already have static IP addresses, then statically configure one or more IP addresses on each VLAN you want to support PIM-SM operation. (PIM-SM cannot be enabled on a VLAN that does not have a statically configured IP address. That is, PIM-SM cannot use an IP address acquired by DHCP/Bootp.)
 b. Use `ip pim-sparse` to enter the VLAN’s `pim-sparse` context and do one of the following:
 – Enable PIM-SM on the VLAN and allow the default option (`any`) to dynamically determine the source IP address for the PIM-SM packets sent from this VLAN interface.
 – Enable PIM-SM on the VLAN and specify an IP address for the PIM-SM packets sent from this VLAN interface. (The specified IP address must already be statically configured on the VLAN.)

 (This step requires enabling `router pim` on the global configuration context. Refer to step 3 on page 4-20.)
 c. In the VLAN’s `pim-sparse` context, you also have the option to change the current DR priority (default = 1) to the value wanted for the current router in the current VLAN. (Use `dr-priority < 0 - 4294967295 >`.)

Note

When you initially enable PIM-SM, ProCurve recommends that you leave the PIM-SM traffic control settings (listed in the next step) at their default settings. You can then assess performance and make configuration changes where a need appears.
This is an optional step in the initial PIM-SM configuration. (Refer to the preceding Note.) In the **pim-sparse** context of a given VLAN on which PIM-SM is enabled, change one or more of the traffic control settings listed in the following table. (Note that some VLAN context control settings apply to both PIM-SM and PIM-DM.)

<table>
<thead>
<tr>
<th>Features Accessed in VLAN-< vid >-pim-sparse Context</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-addr (page 4-29)</td>
<td>Sets or resets the source IP address for PIM-SM packets sent out on the interface. Also enables PIM-SM on the interface. (Default: any)</td>
</tr>
<tr>
<td>hello-interval* (page 4-30)</td>
<td>Resets the interval between transmitted PIM Hello packets on the interface. (Default: 30 seconds)</td>
</tr>
<tr>
<td>hello-delay* (page 4-31)</td>
<td>Resets the maximum delay for transmitting a triggered PIM Hello packet on the interface. (Default: 5 seconds)</td>
</tr>
<tr>
<td>nbr-timeout (page 4-31)</td>
<td>Resets the neighbor loss time interval for the interface. (Default: 180 seconds)</td>
</tr>
<tr>
<td>lan-prune-delay* (page 4-32)</td>
<td>Enables or disables the LAN prune delay feature on the interface. (Default: on)</td>
</tr>
<tr>
<td>override-interval* (page 4-33)</td>
<td>Resets the override interval of the LAN Prune Delay configured on the interface. (Default: 2500 milliseconds)</td>
</tr>
<tr>
<td>propagation-delay* (page 4-33)</td>
<td>Resets the delay interval for triggering LAN Prune Delay packets on the interface. (Default: 500 milliseconds)</td>
</tr>
<tr>
<td>dr-priority (page 4-33)</td>
<td>Resets the priority of the interface in the Designated Router election process. (Default: 1) If you want one router on a given VLAN to have a higher priority for DR than other routers on the same VLAN, use the dr-priority command to reconfigure the DR priority setting as needed. Otherwise, the highest DR priority among multiple routers on the same VLAN interface is assigned to the router having the highest source IP address for PIM-SM packets on that interface.</td>
</tr>
</tbody>
</table>

Applies to both PIM-SM and PIM-DM operation.
Router PIM Configuration

These steps configure PIM-SM in the Router PIM context (ProCurve(pim)#_).

1. Specify the VLAN interface to advertise as the BSR candidate and enable the router to advertise itself as a candidate BSR in a PIM-SM domain. (Use `bsr-candidate source-ip-vlan < vid >`.)

2. Optional: To make BSR candidate selection occur quickly and predictably, set a different priority on each BSR candidate in the domain. (Use `bsr-candidate priority` — page 4-36.)

3. Do one of the following to configure RP operation:
 - Recommended: Enable C-RP operation and configure the router to advertise itself as a candidate RP to the BSR for the current domain. This step includes the option to allow the C-RP to be a candidate for either all possible multicast groups or for up to four multicast groups and/or ranges of groups. (Use `rp-candidate source-ip-vlan < vid > [group-addr/group-mask]`.)
 - Alternative or Additional Option: Use `rp-address < ip-addr> [group-addr/group-mask]` to statically configure the router as the RP for a specified multicast group or range of multicast groups. (This must be configured on all PIM-SM routers in the domain.)

4. Optional: In the PIM router context, change one or more of the traffic control settings in the following table.

<table>
<thead>
<tr>
<th>Options Accessed in Router PIM Context</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rp-candidate group-prefix < group-addr/group-mask></code></td>
<td>Enter an address and mask to define an additional multicast group or a range of groups.</td>
</tr>
<tr>
<td><code>rp-candidate hold-time < 3 - 255></code></td>
<td>Tells the BSR how long it should expect the sending Candidate-RP router to be operative. (Default: 150; 0 if router is not a candidate)</td>
</tr>
<tr>
<td><code>rp-candidate priority < 0 - 255></code></td>
<td>Changes the priority for the Candidate-RP router. When multiple C-RPs are configured for the same multicast group(s), the priority determines which router becomes the RP for such groups. A smaller value means a higher priority. (Default: 192)</td>
</tr>
<tr>
<td><code>[no] spt-threshold (page 4-42)</code></td>
<td>Disable or enable the router’s ability to switch multicast traffic flows to the shortest path tree. (Default: enabled)</td>
</tr>
</tbody>
</table>
Options Accessed in Router PIM Context

<table>
<thead>
<tr>
<th>Option</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>join-prune-interval < 5 - 65535></code></td>
<td>Optional: Globally change the interval for the frequency at which join and prune messages are forwarded on the router’s VLAN interfaces. (Default: 60 seconds)</td>
</tr>
<tr>
<td><code>trap</code></td>
<td>Optional: Enable or disable PIM traps. (Default: disabled.)</td>
</tr>
<tr>
<td><code>neighbor-loss</code></td>
<td></td>
</tr>
<tr>
<td><code>hardware-mrt-full</code></td>
<td></td>
</tr>
<tr>
<td><code>software-mrt-full</code></td>
<td></td>
</tr>
<tr>
<td><code>all</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring PIM-SM on the Router

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Context Commands</td>
<td></td>
</tr>
<tr>
<td>[no] ip routing</td>
<td>4-26</td>
</tr>
<tr>
<td>[no] ip multicast-routing</td>
<td>4-26</td>
</tr>
<tr>
<td>[no] router < rip</td>
<td>ospf ></td>
</tr>
<tr>
<td>[no] ip route < src-ip-addr/mask > < dest ></td>
<td>4-26</td>
</tr>
<tr>
<td>[no] router pim</td>
<td>4-26</td>
</tr>
<tr>
<td>VLAN context</td>
<td>4-28</td>
</tr>
<tr>
<td>[no] ip igmp</td>
<td>4-28</td>
</tr>
<tr>
<td>ip pim-sparse</td>
<td>4-29</td>
</tr>
<tr>
<td>[ip-address]</td>
<td>4-33</td>
</tr>
<tr>
<td>hello-interval</td>
<td>4-30</td>
</tr>
<tr>
<td>hello-delay</td>
<td>4-31</td>
</tr>
<tr>
<td>nbr-timeout</td>
<td>4-32</td>
</tr>
<tr>
<td>lan-prune-delay</td>
<td>4-32</td>
</tr>
<tr>
<td>override-interval</td>
<td>4-33</td>
</tr>
<tr>
<td>propagation-delay</td>
<td>4-33</td>
</tr>
<tr>
<td>dr-priority</td>
<td>4-33</td>
</tr>
<tr>
<td>router pim Context</td>
<td>4-35</td>
</tr>
<tr>
<td>bsr-candidate source-ip-vlan</td>
<td>4-35</td>
</tr>
<tr>
<td>bsr-candidate</td>
<td>4-35</td>
</tr>
<tr>
<td>priority</td>
<td>4-36</td>
</tr>
<tr>
<td>hash-mask</td>
<td>4-36</td>
</tr>
<tr>
<td>bsm-interval</td>
<td>4-37</td>
</tr>
<tr>
<td>rp-candidate source-ip-vlan</td>
<td>4-38</td>
</tr>
<tr>
<td>rp-candidate</td>
<td>4-40</td>
</tr>
<tr>
<td>group-prefix</td>
<td>4-40</td>
</tr>
<tr>
<td>hold-time</td>
<td>4-40</td>
</tr>
<tr>
<td>priority</td>
<td>4-41</td>
</tr>
<tr>
<td>trap</td>
<td>4-41</td>
</tr>
<tr>
<td>ip pim-sparse spt-threshold</td>
<td>4-42</td>
</tr>
<tr>
<td>rp-address</td>
<td>4-42</td>
</tr>
</tbody>
</table>
Global Configuration Context for Supporting PIM-SM

Before configuring specific PIM-SM settings, it is necessary to enable IP routing, IP multicast-routing, an IP routing protocol, and PIM in the global configuration context. Also, if the router operates as an edge router for any end points (receivers) expected to join multicast groups, then it is also necessary to enable IGMP on the VLANs supporting such receivers.

Global Configuration Context Commands

Note

PIM-SM operation requires an IP routing protocol enabled on the router. You can use RIP, OSPF, and/or static routing. The examples in this section use RIP. For more on these topics, refer to chapter 5, “IP Routing Features” in this guide.

Syntax:

[no] ip routing

Enables IP routing on the router. The no form of the command disables IP routing. Note that before disabling IP routing, it is necessary to disable all other IP routing protocols on the router. (Default: Disabled)

Syntax:

[no] ip multicast-routing

Enables or disables IP multicast routing on the router. IP routing must be enabled first. Note that router PIM must be disabled before disabling IP multicast routing. (Default: Disabled)

Syntax:

[no] router < ospf | rip >
[no] ip route < ip-addr/mask-len > [< ip-addr | vlan | reject | blackhole >]

These commands are the options for the IP routing protocol required to support PIM operation. For more on these options, refer to the chapter titled “IP Routing Features” in this guide.

Syntax:

[no] router pim

Enables PIM at the global level and puts the CLI into the PIM context level. Executing the no form of the command at the global level disables PIM. IP routing must be enabled before enabling PIM. (Default: Disabled.)
Example of Configuring for PIM Support at the Global Level

Using the topology shown above, router “B” is directly connected to the DR for multicast group “X”. In this case, suppose that you want to globally configure router “B” for PIM operation. On the global level, you would enable the following:

- IP routing
- IP multicast routing
- an IP routing protocol (RIP, OSPF, or static routing; use RIP for this example)

```
ProCurve(config)# ip routing
ProCurve(config)# ip multicast-routing
ProCurve(config)# router rip
ProCurve(rip)# exit
ProCurve(config)# router pim
ProCurve(pim)# exit
ProCurve(config)#
```

Figure 4-4. Global Configuration for Supporting PIM-SM Operation
ProCurve(config)# show running-config

Running configuration:

; J8693A Configuration Editor; Created on release #K.11.XX

hostname "ProCurve"
module 2 type J8705A
module 1 type J8702A
ip routing
snmp-server community "public" Unrestricted
vlan 1
 name "DEFAULT_VLAN"
 untagged A1-A24, B1-B24
 ip address 10.10.10.1 255.255.255.0
 exit
ip multicast-routing
router rip
 exit
router pim
 exit

Figure 4-5. Displaying the Running Configuration

VLAN Context Commands for Configuring PIM-SM

PIM-SM must be configured on at least one VLAN in the router before it can be configured as a C-BSR or a C-RP.

Enabling or Disabling IGMP in a VLAN

IGMP must be enabled in VLANs on edge routers where multicast receivers (end points) are connected and will be requesting to join multicast groups.

Syntax:

[no] ip igmp
[no] vlan < vid > ip igmp

Enables or disables IGMP operation in the current VLAN. Configuring IGMP on the router is required in VLANs supporting edge router operation. For more information, refer to the chapter titled “Multimedia Traffic Control with IP Multicast (IGMP)” in this guide.
PIM-SM (Sparse Mode)
Configuring PIM-SM on the Router

Enabling or Disabling PIM-SM Per-VLAN

Syntax:
```
ip pim-sparse [ip-addr < any | < ip-addr >>]
vlan < vid >] ip pim-sparse [ip-addr < any | < ip-addr >>]
no [vlan < vid >] ip pim-sparse
```

This command enables or disables PIM-SM in the designated VLAN interface and sets the source (and designated router) IP address for PIM-SM packets sent from the interface. Executing the command without specifying an IP address option causes the router to default to the *any* option. The *no* form of the command disables PIM-SM on the specified VLAN. To change a currently configured (non-default) source IP address setting, use the *ip-addr < ip-addr >* option, below.

(Default: PIM-SM disabled)

ip-addr any: Enables the router to dynamically determine from the VLAN’s current IP configuration the source IP address to use for PIM-SM packets sent from the VLAN interface.

Note: Using this command after a source IP address has already been set does not change that setting.

— Continued on the next page.—

ip-addr < ip-addr >: Specifies one of the VLAN’s currently existing IP addresses for use as the source IP address for PIM-SM packets sent from the VLAN interface. Note that `< ip-addr >` must first be statically configured on the VLAN.

Note: To change an existing source IP address setting, you must use this command option.
Changing the Interval for PIM-SM Neighbor Notification

Syntax:
```
ip pim-sparse hello-interval < 5 - 300 >
vlan < vid > ip pim-sparse hello-interval < 5 - 300 >
```

Changes the frequency at which the router transmits PIM “Hello” messages on the current VLAN. The router uses “Hello” packets to inform neighboring routers of its presence. The router also uses this setting to compute the **Hello Hold Time**, which is included in Hello packets sent to neighbor routers. **Hello Hold Time** tells neighbor routers how long to wait for the next Hello packet from the router. If another packet does not arrive within that time, the router removes the neighbor adjacency on that VLAN from the routing table, which removes any flows running on that interface. Shortening the Hello interval reduces the Hello Hold Time. This changes how quickly other routers will stop sending traffic to the router if they do not receive a new Hello packet when expected. For example, if multiple routers are connected to the same VLAN and the router requests multicast traffic, all routers on the VLAN receive that traffic. (Those which have pruned the traffic will drop it when they receive it.) If the upstream router loses contact with the router receiving the multicast traffic (that is, fails to receive a Hello packet when expected), then the shorter Hello Interval causes it to stop transmitting multicast traffic onto the VLAN sooner, resulting in less unnecessary bandwidth use. (Default: 30 seconds.)
Changing the Randomized Delay Setting for PIM-SM Neighbor Notification

Syntax: ip pim-sparse hello-delay < 0 - 5 >
vlans < vid > ip pim-sparse hello-delay < 0 - 5 >

Changes the maximum time in seconds before the router actually transmits the initial PIM Hello message on the current VLAN. In cases where a new VLAN activates with connections to multiple routers, if all of the connected routers sent Hello packets at the same time, then the receiving router could become momentarily overloaded. This value randomizes the transmission delay to a time between 0 and the hello delay setting. Using “0” means no delay. After the router sends the initial Hello Packet to a newly detected VLAN interface, it sends subsequent Hello packets according to the current Hello Interval setting. Not used with the no form of the ip pim command. (Default: 5 seconds.)

Changing the PIM-SM Neighbor Timeout Interval

Syntax: ip pim-sparse nbr-timeout < 60 - 65535 >
vlans < vid > ip pim-sparse nbr-timeout < 60 - 65535 >

Changes the timeout interval allowed between successive Hello messages from a PIM-SM neighbor (in seconds) after which the neighbor will be considered unreachable. (Default: 180 seconds.)
Enabling or Disabling LAN Prune Delay

Syntax:

```
[no] ip pim-sparse lan-prune-delay
[no] vlan < vid > ip pim-sparse lan-prune-delay
```

Enables the LAN Prune Delay option on the current VLAN. With `lan-prune-delay` enabled, the router informs downstream neighbors how long it will wait before pruning a flow after receiving a prune request. Other, downstream routers on the same VLAN must send a Join to override the prune before the `lan-prune-delay` time if they want the flow to continue. This prompts any downstream neighbors with multicast receivers continuing to belong to the flow to reply with a Join. If no Joins are received after the `lan-prune-delay` period, the router prunes the flow. The `propagation-delay` and `override-interval` settings (below) determine the `lan-prune-delay` setting.

Uses the **no** form of the command to disable the LAN Prune Delay option.

(Default: Enabled.)
Changing the LAN-Prune-Delay Interval

Syntax:
`ip pim-sparse propagation-delay < 250-2000 >`
`vlan < vid > ip pim-sparse propagation-delay < 250-2000 >`
`ip pim-sparse override-interval < 500 - 6000 >`
`vlan < vid > ip pim-sparse override-interval < 500 - 6000 >`

A router sharing a VLAN with other multicast routers uses these two values to compute the **lan-prune-delay** setting (above) for how long to wait for a PIM-SM join after receiving a prune packet from downstream for a particular multicast group. For example, a network may have multiple routers sharing VLAN “X”. When an upstream router is forwarding traffic from multicast group “X” to VLAN “Y”, if one of the routers on VLAN “Y” does not want this traffic it issues a prune response to the upstream neighbor. The upstream neighbor then goes into a “prune pending” state for group “X” on VLAN “Y”. (During this period, the upstream neighbor continues to forward the traffic.) During the “pending” period, another router on VLAN “Y” can send a group “X” Join to the upstream neighbor. If this happens, the upstream neighbor drops the “prune pending” state and continues forwarding the traffic. But if no routers on the VLAN send a Join, then the upstream router prunes group “X” from VLAN “Y” when the **lan-prune-delay** timer expires.
(Defaults: **propagation-delay** = 500 milliseconds; **override-interval** = 2500 milliseconds.)

Changing the DR (Designated Router) Priority

Syntax:
`ip pim-sparse dr-priority < 0 - 4294967295 >`

This command changes the router priority for the DR (Designated Router) election process in the current VLAN. A numerically higher value means a higher priority. If the highest priority is shared by multiple routers in the same VLAN, then the router with the highest IP address is selected as the DR. A 0 (zero) value disables DR operation for the router on the current VLAN.
(Range: 0 - 2147483647; Default: 1)
Example of Configuring PIM-SM Support in a VLAN Context

PIM-SM support must be configured in each VLAN where you want PIM-SM forwarding of multicast traffic. This example illustrates the following per-VLAN configuration steps:

- Enabling PIM-SM on VLAN 120 and allow the default “any” option to select a source IP address for PIM-SM packets forwarded from this VLAN. (Because the VLAN in this example is configured with only one IP address—120-10.10.2—it is this address that will be used for the source.)
- Increasing the Designated Router (DR) priority on this VLAN from the default 1 to 100.
- Leaving the other per-VLAN PIM-SM fields in their default settings.

```
ProCurve(config)# vlan 120
ProCurve(vlan-120)# ip pim-sparse
ProCurve(vlan-120-pim-sparse)# dr-priority 100
ProCurve(vlan-120-pim-sparse)# show ip pim interface 120

PIM Interface

<table>
<thead>
<tr>
<th>VLAN</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>120.10.10.2</td>
</tr>
<tr>
<td>Mode</td>
<td>sparse</td>
</tr>
<tr>
<td>Designated Router</td>
<td>120.10.10.2</td>
</tr>
<tr>
<td>Hello Interval (sec)</td>
<td>30</td>
</tr>
<tr>
<td>Hello Delay (sec)</td>
<td>5</td>
</tr>
<tr>
<td>Override Interval (msec)</td>
<td>2500</td>
</tr>
<tr>
<td>Propagation Delay (msec)</td>
<td>500</td>
</tr>
<tr>
<td>Neighbour Timeout</td>
<td>180</td>
</tr>
<tr>
<td>Lan Prune Delay</td>
<td>Yes</td>
</tr>
<tr>
<td>Lan Delay Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>DR Priority</td>
<td>100</td>
</tr>
</tbody>
</table>
```

Figure 4-6. Example of Enabling PIM-SM in a VLAN
Router PIM Context Commands for Configuring PIM-SM Operation

This section describes the commands used in the Router PIM context to:

- enable or disable SNMP trap status for PIM events (default: disabled)
- configure candidate Bootstrap Router (BSR) operation
- configure candidate Rendezvous Point (RP) operation or the (optional) static Rendezvous Point (RP) operation

Note Before configuring BSR, RP, and SNMP trap operation for PIM-SM, it is necessary to enable PIM-SM on at least one VLAN on the router.

Configuring a BSR Candidate

Select the VLAN Interface To Advertise as a BSR Candidate.

Syntax:

```plaintext
[no] bsr-candidate source-ip-vlan <vid>
[no] router pim bsr-candidate source-ip-vlan <vid>
```

Configures the router to advertise itself as a candidate PIM-SM Bootstrap Router (BSR) on the VLAN interface specified by `source-ip-vlan <vid>`, and enables BSR candidate operation. This makes the router eligible to be elected as the BSR for the PIM-SM domain in which it operates. Note that one BSR candidate VLAN interface is allowed per-router. The `no` form of the command deletes the BSR source IP VLAN configuration and also disables the router from being a BSR candidate if this option has been enabled. (See the `bsr-candidate` command, below.)

Enable or Disable BSR Candidate Operation on a Router.

Syntax:

```plaintext
[no] bsr-candidate
[no] router pim bsr-candidate
```

Disables or re-enables the router for advertising itself as a Candidate-BSR on the VLAN interface specified by `source-ip-vlan <vid>`. This command is used to disable and re-enable BSR candidate operation after the `bsr-candidate source-ip-vlan <vid>` command has been used to enable C-BSR operation on the router. (That is, this command operates only after the BSR source-ip-VLAN ID has been configured.) (Default: Disabled.)
Changing the Priority Setting for a BSR-Candidate Router.

Syntax:
bsr-candidate priority < 0 - 255 >
[no] router pim bsr-candidate priority < 0 - 255 >

Specifies the priority to apply to the router when a BSR election process occurs in the PIM-SM domain. The candidate with the highest priority becomes the BSR for the domain. If the highest priority is shared by multiple routers, then the candidate having highest IP address becomes the domain’s BSR. Zero (0) is the lowest priority. To make BSR selection easily predictable, use this command to assign a different priority to each candidate BSR in the PIM-SM domain. (Default: 0; Range 0 - 255.)

Note: Disabling PIM-SM on the elected BSR or disabling the C-BSR functionality on the elected BSR causes the router to send a bootstrap message (BSM) with a priority setting of 0 (zero) to trigger a new BSR election. If all BSRs in the domain are set to the 0 (default) priority, then the election will fail because the result would be to re-elect the BSR that has become unavailable. For this reason, it is recommended that all C-BSRs in the domain be configured with a bsr-candidate priority greater than 0.

Changing the Distribution of Multicast Groups Across a Domain.

Syntax:
bsr-candidate hash-mask-length < 1 - 32 >
[no] router pim bsr-candidate hash-mask-length < 1 - 32 >

Controls distribution of multicast groups among the candidate RPs in a domain where there is overlapping coverage of the groups among the RPs. This value specifies the length (number of significant bits) taken into account when allocating this distribution. A longer hash-mask-length results in fewer multicast groups in each block of group addresses assigned to the various RPs. Because multiple blocks of addresses are typically assigned to each candidate RP, this results in a wider dispersal of addresses and enhances load-sharing of the multicast traffic of different groups being used in the domain at the same time. (Default: 30; Range: 1 - 32.)
Changing the Bootstrap Router Message Interval.

Syntax:
```
bsr-candidate bsm-interval < 5 - 300 >
[no] router pim bsr-candidate bsm-interval < 5 - 300 >
```

Specifies the interval in seconds for sending periodic RP-Set messages on all PIM-SM interfaces on a router operating as the elected BSR in a domain.

Note: This setting must be smaller than the rp-candidate hold-time settings (range of 30 - 255; default 150) configured in the RPs operating in the domain. (Default: 60; Range 5 - 300.)

Configuring Candidate-RPs on PIM-SM Routers

Note

Before configuring BSR, RP, and SNMP trap operation for PIM-SM, it is necessary to enable PIM-SM on at least one VLAN on the router.

An RP candidate advertises its availability, IP address, and the multicast group or range of groups it supports. The commands in this section are used to configure RP candidate operation. The sequence of steps is as follows:

1. Specify the Source IP VLAN.
2. Enable Candidate-RP operation.
3. Optional: Enable or disable specific multicast address groups.

Specify the Source IP VLAN (and Optionally Configure one or more Multicast Groups or Range of Groups). Specifying the source IP VLAN ID automatically configures the RP candidate to support all multicast groups (unless you include an individual group or range of groups in the command). The recommended approach is to allow all multicast groups unless you have a reason to limit the permitted groups to a specific set.
Syntax: [no] rp-candidate source-ip-vlan < vid > [group-prefix < group-addr/mask]
[no] router pim rp-candidate source-ip-vlan < vid > [group-prefix < group-addr/mask]

This command configures C-RP operation as follows:
• specifies the VLAN interface from which the RP IP address
will be selected for advertising the router as an RP
candidate. Note that only one VLAN on the router can be
configured for this purpose at any time.
• enables the router as an RP candidate.
• specifies the multicast groups for which the router is a C­
RP. (When executed without specifying a multicast group
or range of groups, the resulting RP candidate defaults to
allowing support for all multicast groups—224.0.0.0
240.0.0.0, or 224.0.0.0/4.
(Default: Disabled.)

This command is required to initially configure the router as
a Candidate-RP.
• To later add to or change multicast groups, or to delete
multicast groups, use rp-candidate group-prefix < group-addr |
group-mask >, as described under “Adding or Deleting a
Multicast Group Address” on page 4-40.
• To disable C-RP operation without removing the current C-
RP configuration, use no rp-candidate. (Refer also to
“Enabling or Disabling Candidate-RP Operation” on
page 4-40.)
• The no form of the command:
 – deletes the RP source IP VLAN configuration
 – deletes the multicast group assignments configured on
the router for this RP
 – disables the router from being an RP candidate.

< vid >: Identifies the VLAN source of the IP address to advertise
as the RP candidate address for the router.
group-prefix < group-addr/mask >: Specifies the multicast group(s) to advertise as supported by the RP candidate. Use this option when you want to enable the Candidate-RP and simultaneously configure it to support a subset of multicast addresses or ranges of addresses instead of all possible multicast addresses.

A group prefix can specify all multicast groups (224.0.0.0 - 239.255.255.255), a range (subset) of groups, or a single group. A given address is defined by its nonzero octets and mask. The mask is applied from the high end (leftmost) bits of the address and must extend to the last nonzero bit in the lowest-order, nonzero octet. Any intervening zero or nonzero octet requires eight mask bits. For example:

- **228.0.0.64/26**: Defines a multicast address range of 228.0.0.64 through 228.0.0.127. (The last six bits of the rightmost octet are wildcards.)
- **228.0.0.64/30**: Defines a multicast address range of 228.0.0.64 through 228.0.0.67. (The last two bits of the rightmost octet are wildcards.)
- **228.0.0.64/32**: Defines a single multicast address of 228.0.0.64. (There are no wildcards in this group prefix.)
- **228.0.0.64/25**: Creates an error condition due to the mask failing to include the last (rightmost) nonzero bit in the lowest-order, nonzero octet. (That is, this mask supports an address of 228.0.0.128, but not 228.0.0.64.)

Note that the larger the mask, the smaller the range of multicast addresses supported. A mask of 32 bits always specifies a single multicast address. For example:

- **230.0.15.240/32**: Defines a single multicast address of 230.0.15.240.
Enabling or Disabling Candidate-RP Operation. Use this command when the router is already configured with a source IP VLAN ID and you want to enable or disable C-RP operation on the router.

Syntax: [no] rp-candidate

Enables Candidate-RP operation on the router. Requires that the source IP VLAN is currently configured, but disabled (page 4-37). The no form of the command disables the currently configured Candidate-RP operation, but does not change the configured Candidate-RP settings.

Adding or Deleting a Multicast Group Address. Use this command if you need to modify the multicast address group configuration for a candidate-RP on the router.

Syntax: [no] rp-candidate group-prefix < group-addr | group-mask >

Adds a multicast group address to the current Candidate-RP configuration. Requires that the source IP VLAN (page 4-37) is already configured. The no form of the command removes a multicast group address from the current Candidate-RP configuration.

This command does not enable or disable RP candidate operation.

Note: An RP candidate supports up to four separate multicast address groups. Also, if only one group-prefix address exists in the Router PIM configuration, you cannot delete it unless you first add another group-prefix address.

Changing the Candidate-RP Hold-Time. Hold-Time is included in the advertisements the Candidate-RP periodically sends to the domain’s elected BSR, and updates the BSR on how long to wait after the last advertisement from the reporting RP before assuming that it has become unavailable. For more on this topic, refer to “BSR Role in Fault Recovery” on page 4-14.

Syntax: rp-candidate hold-time < 3 - 255 >

Changes the hold time a C-RP includes in its advertisements to the BSR. Also, if C-RP is configured, but disabled, this command re-enables it.

(Default: 150 seconds; Range: 3 - 255 seconds.)
Changing a Candidate-RP’s Election Priority. This priority is significant when multiple Candidate-RPs in a given domain are configured to support one or more of the same multicast groups.

Syntax: `rp-candidate priority < 0 - 255 >`

Changes the current priority setting for a candidate-RP. Where multiple candidate-RPs are configured to support the same multicast group(s), the candidate having the highest priority is elected. Zero (0) is the highest priority; 255 is the lowest priority.

(Default: 192)

Enabling, Disabling, or Changing Router PIM Notification Traps

Syntax: `[no] router pim trap < all | neighbor-loss | hardware-mrt-full | software-mrt-full >`

Enables and disables these PIM SNMP traps:

- **all** — Enable/Disable all PIM notification traps. (Default: Disabled)
- **neighbor-loss** — Enable/Disable the notification trap sent when the timer for a multicast router neighbor expires and the switch has no other multicast router neighbors on the same VLAN with a lower IP address. (Default: Disabled.)
- **hardware-mrt-full** — Enable/Disable notification trap sent when the hardware multicast routing table (MRT) is full (1023 active flows). In this state, any additional flows are handled by the software MRT, which increases processing time for the affected flows. (Default: Disabled.)
- **software-mrt-full** — Enable/Disable notification trap sent when the router’s software multicast routing table is full (that is, when routing resources for active flows are exhausted). Note that in this state, the router does not accept any additional flows. (Default: Disabled.)

Note: Trap operation requires configuring an SNMP trap receiver by using the `snmp-server host < ip-addr >` command at the global configuration level.
Changing the Global Join-Prune Interval on the Router

Syntax: router pim join-prune-interval <5 - 65535>

Sets the interval in seconds at which periodic PIM-SM join/prune messages are to be sent on the router’s PIM-SM interfaces. This setting is applied to every PIM-SM interface on the router. (Default: 60 seconds)

Note: All routers in a PIM-SM domain should have the same join-prune-interval setting.

Changing the Shortest-Path Tree (SPT) Operation

Generally, using the SPT option eliminates unnecessary levels of PIM-SM traffic in a domain. However, in cases where it is necessary to tightly control the paths used by PIM-SM flows to edge switches, disabling SPT maintains the flows through their original C-RPs regardless of whether shorter paths exist.

Syntax: router pim spt-threshold

When the router is the edge router for a receiver requesting to join a particular multicast group, this command enables or disables the capability of the router to convert the group’s traffic from the RPT (Rendezvous Point Tree) to the SPT (shortest path tree). For more information, refer to “Restricting Multicast Traffic to Rendezvous-Point Trees (RPTs)” on page 4-11. (Default: Enabled.)

Statically Configuring an RP To Accept Multicast Traffic

A given static-RP entry should be manually configured on all routers in the PIM-SM domain. For information on applying static-RPs in a domain, refer to “Static Rendezvous Point (Static-RP)” on page 4-17.

Syntax: router pim rp-address < rp-ip-addr > < group-addr/group-mask > [override]

[no] router pim rp-address < rp-ip-addr > < group-addr/group-mask > [override]
<rp-ip-addr>: Statically specifies the IP address of the interface to use as an RP. Up to four static-RP IP addresses can be configured. (Each address can be entered multiple times for different multicast groups or group ranges.)
<group-addr/group-mask>: Specifies the multicast group or range of contiguous groups supported by the statically configured RP.
[override]: Where a static-RP and a C-RP are configured to support the same multicast group(s) and the multicast group mask for the static RP is equal to or greater than the same mask for the applicable C-RPs, this command assigns the higher precedence to the static-RP, resulting in the C-RP operating only as a backup RP for the configured group. Without override, the C-RP has precedence over a static-RP configured for the same multicast group(s).

Example of Configuring PIM-SM Support in the Router PIM Context

This example assumes the following:

- IP routing, IP multicast-routing, and at least one routing method (RIP, OSPF, and/or static IP routes) are already configured in the global configuration context.
- An IP routing method (RIP or OSPF) and PIM-sparse are already configured in the static VLAN context on which you want to support PIM-SM operation.

Note

Routers configured for C-RP operation can also be configured for C-BSR operation.

Use of static-RP operation must be identically configured on all PIM-SM routers in the domain.

Figure 4-7 illustrates the following configuration steps for the Router PIM context:

- Enabling BSR operation on the router, including specifying a source IP address.
- Enabling C-RP operation on the router.
- Replacing the default multicast group range (all) with a smaller range (231.128.24.0/18) and a single group address (230.255.1.1/32).
PIM-SM (Sparse Mode)
Configuring PIM-SM on the Router

- Enabling static-RP with an **override** on this router for a single group address \((231.128.64.255/32)\) within the range of the C-RP support for the \(231.128.24.0\) group.
- Leaving the other Router PIM fields in their default settings.

<table>
<thead>
<tr>
<th>Enters Router PIM context.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProCurve(config)# router pim</td>
</tr>
<tr>
<td>ProCurve(pim)# bsr-candidate source-ip-vlan 120</td>
</tr>
<tr>
<td>ProCurve(pim)# rp-candidate source-ip-vlan 120</td>
</tr>
<tr>
<td>ProCurve(pim)# rp-candidate group-prefix 231.128.64.0/18</td>
</tr>
<tr>
<td>ProCurve(pim)# rp-candidate group-prefix 230.255.1.1/32</td>
</tr>
<tr>
<td>ProCurve(pim)# no rp-candidate group-prefix 224.0.0.0/4</td>
</tr>
<tr>
<td>ProCurve(pim)# rp-address 120.11.10.1 231.128.64.0/18 override</td>
</tr>
<tr>
<td>ProCurve(pim)#</td>
</tr>
</tbody>
</table>

Note: The static RP takes precedence over the C-RP for multicast groups in the range of \(231.128.64.0/18\) because the mask configured for the static RP meets the criteria of being either equal to or greater than the mask configured for the same group in the C-RP. For example, if the mask for the static-RP was 17 or less, the override would not take effect (even though configured), and the C-RP configuration would take precedence.

![Figure 4-7. Example of Enabling PIM-SM in the Router PIM Context](image)

The next figure illustrates the results of the above commands in the router’s running configuration.
ProCurve(pim)# show running

Running configuration:
.
.
.
router pim
 bsr-candidate
 bsr-candidate source-ip-vlan 120
 bsr-candidate priority 1
 rp-address 120.10.10.2 231.128.64.255 255.255.255.255
 rp-candidate
 rp-candidate source-ip-vlan 120
 rp-candidate group-prefix 230.255.1.1 255.255.255.255
 rp-candidate group-prefix 231.128.64.0 255.255.192.0
 rp-candidate hold-time 150
exit

Figure 4-8. Configuration Results of the Commands in Figure 4-7
Displaying PIM-SM Data and Configuration Settings

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip mroute</td>
<td>4-47</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[< group-addr> < source-ip-addr>]</td>
<td>4-48</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[interface [< vid>]]</td>
<td>4-50</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>show ip pim</td>
<td>4-51</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[mroute]</td>
<td>4-52</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[< group-address> < source-address>]</td>
<td>4-53</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[interface]</td>
<td>4-55</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[vid]</td>
<td>4-55</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[neighbor]</td>
<td>4-57</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[ip-address]</td>
<td>4-58</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>bsr</td>
<td>4-59</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>rp-set</td>
<td>4-61</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[static</td>
<td>learned]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>rp-candidate</td>
<td>4-63</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[config]</td>
<td>4-63</td>
</tr>
</tbody>
</table>
Displaying Multicast Route Data

The commands in this section display multicast routing information on packets sent from multicast sources to IP multicast groups detected by the routing switch.

Listing Basic Route Data for Active Multicast Groups

Syntax: show ip mroute

Lists the following data for all VLANs actively forwarding routed, multicast traffic.

- **Group Address:** The multicast address of the specific multicast group (flow).
- **Source Address:** The IP address of the multicast group source.
- **Neighbor:** The IP address of the upstream multicast router interface (VLAN) from which the multicast traffic is coming. A blank field for a given multicast group indicates that the multicast server is directly connected to the router.
- **VLAN:** The interface on which the multicast traffic is moving.

For example, the next figure displays the `show ip mroute` output illustrating a case where two multicast groups are from the same multicast server source.

```
ProCurve(config)# show ip mroute

IP Multicast Route Entries

Total number of entries : 2

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>Neighbor</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>234.43.209.12</td>
<td>192.168.1.0</td>
<td>192.168.1.3</td>
<td>1</td>
</tr>
<tr>
<td>235.22.22.12</td>
<td>192.168.1.0</td>
<td>192.168.2.4</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Figure 4-9. Example Showing Route Entry Data
Listing Data for an Active Multicast Group

Syntax: show ip mroute [< group-addr > < source-addr >]

Lists the following data for the specified flow (multicast group):

Group Address: The multicast group IP address for the current group.

Source Address: The source IP address < source-ip-addr > for the current group.

Source Mask: The subnet mask applied to the multicast source address < source-ip-addr >.

Neighbor: Lists the IP address of the upstream next-hop router running PIM-SM; that is, the router from which the router is receiving datagrams for the current multicast group. This value is 0.0.0.0 if the router has not detected the upstream next-hop router’s IP address. This field is empty if the multicast server is directly connected to the router.

VLAN: Lists the VLAN ID (VID) on which the router received the specified multicast flow.

Up Time (Sec): The elapsed time in seconds since the router learned the information for the current instance of the indicated multicast flow.

Expire Time (Sec): Indicates the remaining time in seconds before the router ages-out the current flow (group membership). This value decrements until:

- Reset by a state refresh packet originating from the upstream multicast router. (The upstream multicast router issues state refresh packets for the current group as long as it either continues to receive traffic for the current flow or receives state refresh packets for the current flow from another upstream multicast router.)
- Reset by a new flow for the current multicast group on the VLAN.
- The timer expires (reaches 0). In this case the switch has not received either a state refresh packet or new traffic for the current multicast group, and ages-out (drops) the group entry.

Multicast Routing Protocol: Identifies the IP multicast routing protocol through which the current flow was learned.
Unicast Routing Protocol: Identifies the IP routing protocol through which the router learned the upstream interface for the current multicast flow. The listed protocol will be either RIP, OSPF, or Static Route.

Downstream Interfaces:
VLAN: Lists the VID of the VLAN the router is using to send the outbound packets of the current multicast flow to the next-hop router.
State: Indicates whether the outbound VLAN and next-hop router for the current multicast flow are receiving datagrams.
- Pruned: The router has not detected any joins from the current multicast flow and is not currently forwarding datagrams in the current VLAN.
- Forwarding: The router has received a join for the current multicast flow and is forwarding datagrams in the current VLAN.

Up Time (Sec): Indicates the elapsed time in seconds since the router learned the displayed information about the current multicast flow.

ProCurve(config)# show ip mroute 234.43.209.12 192.168.1.0

IP Multicast Route Entry

<table>
<thead>
<tr>
<th>Group Address</th>
<th>234.43.209.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>192.168.1.0</td>
</tr>
<tr>
<td>Source Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Neighbor</td>
<td>192.168.1.3</td>
</tr>
<tr>
<td>VLAN</td>
<td>1</td>
</tr>
<tr>
<td>Up Time (sec)</td>
<td>757</td>
</tr>
<tr>
<td>Expire Time (sec)</td>
<td>173</td>
</tr>
</tbody>
</table>

Multicast Routing Protocol : PIM-SM
Unicast Routing Protocol : RIP

Downstream Interfaces

<table>
<thead>
<tr>
<th>VLAN</th>
<th>State</th>
<th>Up Time (sec)</th>
<th>Expire Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>forwarding</td>
<td>757</td>
<td>12</td>
</tr>
</tbody>
</table>

This Neighbor field indicates that the router is receiving multicast traffic from a neighboring PIM router. A blank Neighbor field indicates that the multicast server is directly connected to the router instead of another PIM router.

Figure 4-10. Example Showing Route Entry Data for a Specific Multicast Group
Listing All VLANs Having Currently Active PIM Flows

Syntax: `show ip mroute interface [< vid >]`

Lists these settings:
- **VLAN:** The VID specified in the command.
- **Protocol:** PIM-SM or PIM-DM.
- **TTL:** The time-to-live threshold for packets forwarded through this VLAN. When configured, the router drops multicast packets having a TTL lower than this value. (When a packet arrives, the router decrements its TTL by 1, then compares the decremented packet TTL to the value set by this command.)
 - A **TTL Threshold** setting of 0 (the default) means all multicast packets are forwarded regardless of the TTL value they carry. A multicast packet must have a TTL greater than 1 when it arrives at the router. Otherwise the router drops the packet instead of forwarding it on the VLAN.

```
ProCurve(config)# show ip mroute interface

IP Multicast Interfaces

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Protocol</th>
<th>TTL Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PIM-SM</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>PIM-SM</td>
<td>15</td>
</tr>
</tbody>
</table>
```

Figure 4-11. Example of Listing the Currently Active Mroute Interfaces

```
ProCurve(config)# show ip mroute interface 29

IP Multicast Interface

VLAN : 29
Protocol : PIM-SM
TTL Threshold : 0
```

Figure 4-12. Example of Listing the Mroute Data for a Specific Mroute Interface
Displaying PIM-Specific Data

The commands in this section display PIM-specific multicast routing information for IP multicast groups detected by the router.

Displaying the Current PIM status and Global Configuration

Syntax: show ip pim

Displays PIM status and global parameters.

PIM Status: Shows either enabled or disabled.

State Refresh Interval (sec): Applies only to PIM-DM operation. Refer to “Displaying PIM Status” on page 3-28.

Join/Prune Interval: Indicates the frequency with which the router transmits join and prune messages for the multicast groups the router is forwarding.

SPT Threshold: When Enabled indicates that, for a given receiver joining a multicast group, an edge router changes from the RPT to the SPT after receiving the first packet of a multicast flow intended for a receiver connected to the router. When Disabled, indicates that the no spt-threshold command has been used to disable SPT operation. (Refer to “Changing the Shortest-Path Tree (SPT) Operation” on page 4-42.)

Traps: Enables the following SNMP traps:

- **neighbor-loss:** Sends a trap if a neighbor router is lost.
- **hardware-mrt-full:** Sends a trap if the hardware multicast router (MRT) table is full (2048 active flows).
- **software-mrt-full:** Sends a trap if the software multicast router (MRT) table is full (2048 active flows). This can occur only if the hardware MRT is also full.
- **all:** Enables all of the above traps.

ProCurve(config)# show ip pim

<table>
<thead>
<tr>
<th>PIM Global Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Status : enabled</td>
</tr>
<tr>
<td>State Refresh Interval (sec) : 60</td>
</tr>
<tr>
<td>Join/Prune Interval (sec) : 60</td>
</tr>
<tr>
<td>SPT Threshold : Enabled</td>
</tr>
<tr>
<td>Traps : all</td>
</tr>
</tbody>
</table>

Figure 4-13. Example Output with PIM Enabled
Displaying Current PIM Entries Existing In the Multicast Routing Table

Syntax: show ip pim mroute

Shows PIM-specific information from the IP multicast routing table (IP MRT). When invoked without parameters, lists all PIM entries currently in the router's IP MRT.
Group Address: Lists the multicast group addresses currently active on the router.
Source Address: Lists the multicast source address for each Group Address.
Metric: Indicates the path cost upstream to the multicast source. Used when multiple multicast routers contend to determine the best path to the multicast source. The lower the value, the better the path. This value is set to 0 (zero) for directly connected routes.
Metric Pref: Used when multiple multicast routers contend to determine the path to the multicast source. When this value differs between routers, PIM selects the router with the lowest value. *If Metric Pref is the same between contending multicast routers, then PIM selects the router with the lowest Metric value to provide the path for the specified multicast traffic. This value is set to 0 (zero) for directly connected routes. (Metric Pref is based on the IP routing protocol in use: RIP, OSPF, or static routing. Also, different vendors may assign different values for this setting.)*

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Source Address</th>
<th>Metric</th>
<th>Metric Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>234.43.209.12</td>
<td>100.150.1.0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>235.22.22.12</td>
<td>100.100.25.0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

This output shows the routing switch is receiving two multicast groups from an upstream device at 27.27.30.2. The “0” metric shows that the routing switch is directly connected to the multicast source.

Figure 4-14. Example Showing a Router Detecting two Multicast Groups from a Directly Connected Multicast Server
Displaying a Specific PIM Entry Stored in the Multicast Routing Table

Syntax: show ip pim mroute [<multicast-group-address> <multicast-source-address>]

Displays the PIM route entry information for the specified multicast group (flow):

Group Address: Lists the specified multicast group address.

Source Address: Lists the specified multicast source address.

Source Mask: Lists the network mask for the multicast source address.

Metric: Indicates the path cost upstream to the multicast source. Used when multiple multicast routers contend to determine the best path to the multicast source. The lower the value, the better the path.

Metric Pref: Used when multiple multicast routers contend to determine the path to the multicast source. When this value differs between routers, PIM selects the router with the lowest value. If Metric Pref is the same between contending multicast routers, then PIM selects the router with the lowest Metric value to provide the path for the specified multicast traffic. (Different vendors assign differing values for this setting.)

Assert Timer: The time remaining until the router ceases to wait for a response from another multicast router to negotiate the best path back to the multicast source. If this timer expires without a response from any contending multicast routers, then the router assumes it is the best path, and the specified multicast group traffic will flow through the router.

RPT-bit: A Yes setting indicates the route is using the RPT. A No setting indicates the route is using the applicable SPT.
DownStream Interfaces:

- **VLAN**: Lists the VID of the destination VLAN on the next-hop multicast router.

- **Prune Reason**: Identifies the reason for pruning the flow to the indicated VLAN:

 - **Prune**: A neighbor multicast router has sent a prune request.

 - **Assert**: Another multicast router connected to the same VLAN has been elected to provide the path for the specified multicast group traffic.

 - **Other**: Used where the VLAN is in the pruned state for any reason other than the above two reasons (such as no neighbors exist and no directly connected multicast receivers have issued Joins).

```
ProCurve# show ip pim mroute 234.43.209.12 192.168.1.0

PIM IP Multicast Route Entry

GROUP ADDRESS : 234.43.209.12
SOURCE ADDRESS : 192.168.1.0
SOURCE MASK : 255.255.255.0
METRIC : 20
METRIC Pref : 1
assert TIMER : 3 min 54 sec
RP-Tree : Yes
Flags : rpt, spt

DownStream Interfaces

VLAN Prune Reason
---- ------------
2 other
3 other
```

Figure 4-15. Example of PIM Mroute Listing for a Specific Multicast Flow
Listing Currently Configured PIM Interfaces

Syntax: show ip pim interface

Lists the PIM interfaces (VLANs) currently configured in the router.

VLAN: Lists the VID of each VLAN configured on the switch to support PIM-DM.

IP Address: Lists the IP addresses of the PIM interfaces (VLANs).

Mode: Shows dense or sparse, depending on which PIM protocol is configured on the router.

```
ProCurve(config)# show ip pim interface

PIM Interfaces

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP Address</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1.10.1</td>
<td>sparse</td>
</tr>
<tr>
<td>2</td>
<td>10.2.10.1</td>
<td>sparse</td>
</tr>
</tbody>
</table>
```

Figure 4-16. Example Showing Two PIM Interfaces Configured

Displaying IP PIM VLAN Configurations

Syntax: show ip pim interface [<vid>]

Displays the current configuration for the specified VLAN (PIM interface). Refer to table 4-1 on page 4-56.
ProCurve(config)# show ip pim interface 1

PIM Interface

VLAN : 1
IP Address : 10.1.10.1
Mode : sparse

Designated Router : 10.1.10.1

Hello Interval (sec) : 30
Hello Delay (sec) : 5

Override Interval (msec) : 2500
Propagation Delay (msec) : 500
Neighbor Timeout : 180

Lan Prune Delay : Yes
Lan Delay Enabled : No

Table 4-1. PIM Interface Configuration Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Control Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN</td>
<td>n/a</td>
<td>vlan < vid > ip pim</td>
</tr>
<tr>
<td>IP</td>
<td>n/a</td>
<td>vlan < vid > ip pim < all</td>
</tr>
<tr>
<td>Mode</td>
<td>dense</td>
<td>n/a; PIM Dense only</td>
</tr>
<tr>
<td>Hello Interval (sec)</td>
<td>300</td>
<td>ip pim hello interval < 5 - 30 ></td>
</tr>
<tr>
<td>Hello Delay</td>
<td>5</td>
<td>The router includes this value in the “Hello” packets the it sends to neighbor routers. Neighbor routers use this value to determine how long to wait for another Hello packet from the router. Refer to “Changing the Interval for PIM-SM Neighbor Notification” on page 4-30.</td>
</tr>
<tr>
<td>Override Interval (msec)</td>
<td>2500</td>
<td>vlan < vid > ip pim override-interval < 500 - 6000 ></td>
</tr>
<tr>
<td>Propagation Delay (msec)</td>
<td>500</td>
<td>vlan < vid > ip pim propagation-delay < 250-2000 ></td>
</tr>
<tr>
<td>Neighbor Timeout</td>
<td>180</td>
<td>ip pim-sparse nbr-timeout < 60 - 65535 ></td>
</tr>
<tr>
<td>LAN Prune Delay</td>
<td>Yes</td>
<td>vlan < vid > ip pim lan-prune-delay</td>
</tr>
<tr>
<td>LAN Delay Enabled</td>
<td>No</td>
<td>Shows Yes if all multicast routers on the current VLAN interface enabled LAN-prune-delay. Otherwise shows No.</td>
</tr>
<tr>
<td>DR Priority</td>
<td>1</td>
<td>ip pim-sparse dr-priority < 0 - 4294967295 ></td>
</tr>
</tbody>
</table>
Displaying PIM Neighbor Data

These commands enable listings of either all PIM neighbors the router detects or the data for a specific PIM neighbor.

Syntax: show ip pim neighbor

Lists PIM neighbor information for all PIM neighbors connected to the router:

IP Address: Lists the IP address of a neighbor multicast router.

VLAN: Lists the VLAN through which the router connects to the indicated neighbor.

Up Time: Shows the elapsed time during which the neighbor has maintained a PIM route to the router.

Expire Time: Indicates how long before the router ages-out the current flow (group membership). This value decrements until:

- Reset by a state refresh packet originating from the upstream multicast router. (The upstream multicast router issues state refresh packets for the current group as long as it either continues to receive traffic for the current flow or receives state refresh packets for the current flow from another upstream multicast router.
- Reset by a new flow for the current multicast group on the VLAN.

The timer expires (reaches 0). In this case the switch has not received either a state refresh packet or new traffic for the current multicast group, and ages-out (drops) the group entry.

DR Priority: Shows the currently configured priority for Designated Router (DR) operation on the interface.

<table>
<thead>
<tr>
<th>IP Address</th>
<th>VLAN</th>
<th>Up Time (sec)</th>
<th>Expire Time (sec)</th>
<th>DR Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.2</td>
<td>100</td>
<td>348</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>10.20.10.1</td>
<td>200</td>
<td>410</td>
<td>97</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 4-18. Example of Output Listing all PIM Neighbors Detected
Syntax: show ip pim neighbor [< ip-address >]

Lists the same information as `show ip pim neighbor` (page 3-34) for the specified PIM neighbor.

ProCurve(config)# show ip pim neighbor 10.10.10.2

PIM Neighbor

IP Address : 10.10.10.2
VLAN : 100

Up Time (sec) : 678
Expire Time (sec) : 93
DR Priority : 1

Figure 4-19. Example Output for a Specific PIM Neighbor
Displaying BSR Data

The router provides BSR information through both IP PIM and the running configuration.

Displaying BSR Status and Configuration

Syntax: show ip pim bsr

Lists the identity, configuration, and time data of the currently elected BSR for the domain, plus the BSR-candidate configuration, the Candidate-RP configuration and the supported multicast groups on the current router.

ProCurve(config)# show ip pim bsr

<table>
<thead>
<tr>
<th>Status and Counters - PIM-SM Bootstrap Router Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-BSR Address : 10.10.10.2</td>
</tr>
<tr>
<td>C-BSR Admin Status : This system is a Candidate-BSR</td>
</tr>
<tr>
<td>C-BSR Source IP VLAN : 100</td>
</tr>
<tr>
<td>C-RP Priority : 192</td>
</tr>
<tr>
<td>224.0.0.0</td>
</tr>
</tbody>
</table>

Figure 4-20. Example ofListing BSR Data for the Domain and the Immediate Router
Listing Non-Default BSR Configuration Settings

The `show running` command includes the current non-default BSR configuration settings on the router.

```plaintext
ProCurve(config)# show running

Running configuration:
.
.
.
ip routing
snmp-server community "public" Unrestricted
vlan 1
 .
 .
vlan 120
 .
 .
ip multicast-routing
router rip
  exit
router pim
  bsr-candidate
  | bsr-candidate source-ip-vlan 120
  | bsr-candidate priority 1
  | rp-candidate
  | rp-candidate source-ip-vlan 120
  | rp-candidate group-prefix 224.0.0.0 240.0.0.0
  | rp-candidate hold-time 150
  exit
vlan 120
  ip rip 120.10.10.2
  ip pim-sparse
    ip-addr any
    exit
  exit
.
.
```

Figure 4-21. Example of Non-Default BSR Configuration Listing

Example of Non-Default BSR Candidate Configuration in the Router's Running Configuration

Note: priority appears only if it is configured to a non-default value.
Displaying the Current RP Set

The BSR sends periodic RP updates to all Candidate RPs in the domain. These updates include the set of multicast group data configured on and reported by all Candidate-RPs in the domain. This data does not include any static-RP entries configured on any router in the domain. (To view the static RP-set information for any static-RPs configured on a particular router, you must access the CLI of that specific router.)

Syntax: show ip pim rp-set [learned | static]

Without options, this command displays the multicast group support for both the learned (elected) Candidate-RP assignments and any statically configured RP assignments.

learned: Displays only the elected Candidate-RP assignments the router has learned from the latest BSR message.

static: Displays only the statically configured RP assignment(s) configured on the router.

<table>
<thead>
<tr>
<th>Status and Counters - PIM-SM Static RP-Set Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>231.100.128.255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status and Counters - PIM-SM Learned RP-Set Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Address</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>231.100.128.0</td>
</tr>
<tr>
<td>232.240.255.252</td>
</tr>
<tr>
<td>237.255.248.1</td>
</tr>
<tr>
<td>239.10.10.240</td>
</tr>
<tr>
<td>239.10.10.240</td>
</tr>
</tbody>
</table>

The static RP-set applies only to the current routing switch.

The Yes override indicates that the static-RP has precedence over any Candidate-RP routers for supporting the indicated group.

The Learned RP-set is received from the BSR and includes an aggregation of reports it has received from all accessible candidate-RPs in the domain.

Figure 4-22. Listing Both the Learned and Static RP-Set Data
ProCurve(config)# show ip pim rp-set learned

Status and Counters - PIM-SM Learned RP-Set Information

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Group Mask</th>
<th>RP Address</th>
<th>Hold Time</th>
<th>Expire Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>231.100.128.0</td>
<td>255.255.240.0</td>
<td>100.10.10.1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>232.240.255.252</td>
<td>255.255.255.252</td>
<td>100.10.10.1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>237.255.248.1</td>
<td>255.255.255.255</td>
<td>100.10.10.1</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>239.10.10.240</td>
<td>255.255.255.240</td>
<td>120.10.10.2</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>239.10.10.240</td>
<td>255.255.255.252</td>
<td>120.10.10.2</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

Figure 4-23. Example of Displaying Only the Learned RP-Set Data for the PIM-SM Domain

ProCurve(config)# show ip pim rp-set static

Status and Counters - PIM-SM Static RP-Set Information

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Group Mask</th>
<th>RP Address</th>
<th>Override</th>
</tr>
</thead>
<tbody>
<tr>
<td>231.100.128.255</td>
<td>255.255.255.255</td>
<td>100.10.10.1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 4-24. Example of Displaying only the Static RP-Set Data (Applies to Current Router Only)
Displaying Candidate-RP Data

Displaying the Router's Candidate-RP Status and Configuration

Syntax: show ip pim rp-candidate [config]

- **rp-candidate:** Lists the current Candidate-RP status and, if the status is enabled for C-RP operation, includes the current C-RP configuration on the router.
- **rp-candidate config:** Lists the current Candidate-RP status and the current C-RP configuration on the router, regardless of whether C-RP operation is currently enabled.

ProCurve(pim)# show ip pim rp-candidate
This system is not a Candidate-RP

Figure 4-25. Example Listing for a Router that is Not Configured as a C-RP

ProCurve(pim)# show ip pim rp-candidate config

<table>
<thead>
<tr>
<th>Status and Counters - PIM-SM Candidate-RP Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-RP Admin Status : This system is not a Candidate-RP</td>
</tr>
<tr>
<td>C-RP Address : 120.10.10.2</td>
</tr>
<tr>
<td>C-RP Hold Time : 150</td>
</tr>
<tr>
<td>C-RP Advertise Period : 60</td>
</tr>
<tr>
<td>C-RP Priority : 192</td>
</tr>
<tr>
<td>C-RP Source IP VLAN : 120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Group Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.10.10.240</td>
<td>255.255.255.252</td>
</tr>
</tbody>
</table>

Figure 4-26. Example of the Full Candidate-RP Configuration Listing
Listing Non-Default C-RP Configuration Settings

The `show running` command includes the current non-default C-RP configuration settings on the router.

```
ProCurve(config)# show running

Running configuration:

ip routing
snmp-server community "public" Unrestricted
vlan 1

ip multicast-routing
router rip
  exit
router pim
  bsr-candidate
  bsr-candidate source-ip-vlan 120
  bsr-candidate priority 1
  rp-candidate
  |rp-candidate source-ip-vlan 120
  |rp-candidate group-prefix 224.0.0.0 240.0.0.0
  rp-candidate hold-time 150
  exit

vlan 120
ip rip 120.10.10.2
ip pim-sparse
  ip-addr any

Figure 4-27. Example of Non-Default C-RP Configuration Listing
```
Operating Notes

Eliminating Redundancy in Support for a Multicast Group. Configuring only one router in a domain as an RP for supporting traffic for a specific multicast group eliminates support redundancy for that group. In this case, if that router becomes unavailable then the group will be excluded from the domain.

Excluding Multicast Groups. If all of the C-RPs and static-RPs (if any) in a domain are configured to exclude some multicast groups or ranges of groups, then multicast traffic for such groups will be dropped when received by a DR, and will not be forwarded to any RP. (Such groups will still be switched locally if IGMP is enabled on the VLAN where the excluded group traffic is received from a multicast traffic source.)

Routing Table Entries. For multicast traffic from a source to the edge router supporting a multicast receiver requesting the traffic, when an SPT forms, the routing table (on the edge router) will contain both of the following for the supported group:

- an (S,G) entry for the source IP address and IP multicast group address supported by the SPT
- an (*,G) entry for the “any” (wildcard) source and (same) multicast group supported by the RP tree

Flow Capacity. The router supports up to 2048 flows. Note that a router acting as a DR or RP will have a significantly higher CPU load than other routers in a PIM-SM domain.

IP Addresses Acquired Through DHCP. PIM-SM operation requires statically configured IP addresses and does not operate with IP addresses acquired from a DHCP server.
Event Log Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><multicast-addr>/mask></code></td>
<td>Inconsistent address and mask.</td>
</tr>
<tr>
<td><code><pkt-type> pkt, src IP <ip-addr> vid <vid-#></code></td>
<td>A PIM packet was received that doesn't have a neighbor.</td>
</tr>
<tr>
<td>Bad <code><parameter-name></code> in <code><pkt-type> pkt from IP <ip-addr></code></td>
<td>The PIM packet was dropped due to a bad parameter in the packet from the IP address shown.</td>
</tr>
<tr>
<td>BSM send to <code><ip-addr></code> failed</td>
<td>A BSM (Bootstrap Message) send failed. The IP address shown is the BSM destination address.</td>
</tr>
<tr>
<td>Candidate BSR functionality disabled <code><pkt-type></code></td>
<td>Candidate BSR functionality has been disabled.</td>
</tr>
<tr>
<td>Candidate RP functionality disabled <code><pkt-type></code></td>
<td>Candidate RP functionality has been disabled.</td>
</tr>
<tr>
<td>C-RP advertisement send to <code><ip-addr></code> failed</td>
<td>A C-RP advertisement send failed. The IP address shown is the destination address of the message.</td>
</tr>
<tr>
<td>Enabled as Candidate BSR using address: <code><ip-addr></code></td>
<td>Candidate BSR functionality has been enabled at the indicated IP address.</td>
</tr>
<tr>
<td>Enabled as Candidate RP using address: <code><ip-addr></code></td>
<td>Candidate RP functionality has been enabled at the indicated IP address.</td>
</tr>
<tr>
<td>Failed alloc of HW <code><flow></code> for flow <code><src-ip-addr>, <multicast-addr></code></td>
<td>Hardware resources are consumed and software routing is being done for the flow.</td>
</tr>
<tr>
<td>Failed to initialize <code><pkt-type></code> as a call back routine</td>
<td>The IP address manager PIM callback routine failed to initialize.</td>
</tr>
<tr>
<td>Failed to alloc a <code><pkt-type></code> pkt (vid <code><vid-#></code>)</td>
<td>Allocation of a packet buffer failed message.</td>
</tr>
<tr>
<td>I/F configured with IP <code><ip-addr></code> on vid <code><vid-#></code></td>
<td>The IP address on the PIM interface has changed to the indicated address.</td>
</tr>
<tr>
<td>I/F removal with IP <code><ip-addr></code> on vid <code><vid-#></code></td>
<td>The PIM interface has been removed due to IP address removal or change of the indicated IP address.</td>
</tr>
<tr>
<td>Message</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Illegal operation in BSR state machine</td>
<td>An illegal state/event combination has been detected in the BSR state machine.</td>
</tr>
<tr>
<td>Malformed Candidate-RP adv recvd from <code><ip-addr></code></td>
<td>The switch received a malformed C-RP-advertisement.</td>
</tr>
<tr>
<td>MCAST MAC add for <code><mac-addr></code> failed</td>
<td>The indicated interface could not join the multicast group for PIM packets.</td>
</tr>
<tr>
<td>MCAST flow <code><src-ip-addr></code>, <code><multicast-addr></code> not rteing (rsc low)</td>
<td>A multicast flow has been dropped due to low resources.</td>
</tr>
<tr>
<td>Multicast Hardware Failed to initialize</td>
<td>The multicast hardware cannot be enabled.</td>
</tr>
<tr>
<td>No IP address configured on VID <code><vid-#></code></td>
<td>An IP address is not configured for the indicated interface enabled with PIM.</td>
</tr>
<tr>
<td>No route to source/rp <code><ip-addr></code></td>
<td>PIM was unable to find a route to the specified IP address.</td>
</tr>
<tr>
<td>No RP for group <code><ip-addr></code></td>
<td>PIM-SM needed an RP for the indicated group address, but none was found.</td>
</tr>
<tr>
<td>Pkt dropped from <code><ip-addr></code> <code><reason></code>, vid <code><vid-#></code></td>
<td>Received a packet from the indicated IP address and VLAN, and dropped it.</td>
</tr>
<tr>
<td>Pkt rcvd with a chksum error from <code><ip-addr></code></td>
<td>A packet arrived from the indicated IP address with a checksum error.</td>
</tr>
<tr>
<td>PIM socket error</td>
<td>There was an error regarding the PIM socket, either on a socket call or a recvfrom call.</td>
</tr>
<tr>
<td>Rcvd pkt ver# <code><#></code>, from <code><ip-addr></code>, expected <code><#></code></td>
<td>Received a packet from the indicated IP address with the wrong PIM version number.</td>
</tr>
<tr>
<td>Rcvd pkt from rtr <code><ip-addr></code>, unkwn pkt type <code><pkt-type></code></td>
<td>Unknown PIM packet type received from the indicated IP address.</td>
</tr>
<tr>
<td>Rcvd hello from <code><ip-addr></code> on vid <code><vid-#></code></td>
<td>A misconfiguration exists between the routers.</td>
</tr>
<tr>
<td>Rcvd incorrect hello from <code><ip-addr></code></td>
<td>An incorrect HELLO packet was received from the indicated IP address.</td>
</tr>
<tr>
<td>Rcvd unkwn opt <code><#></code> in <code><pkt-type></code> pkt from <code><ip-addr></code></td>
<td>A PIM packet with an unknown option number was received from the indicated IP address.</td>
</tr>
<tr>
<td>Rcvd unkwn addr fmly <code><add-family></code> in <code><pkt-type></code> pkt from <code><ip-addr></code></td>
<td>A PIM packet with an unknown address family was received.</td>
</tr>
</tbody>
</table>
PIM-SM (Sparse Mode)

Event Log Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcvd <code><pkt-type></code> pkt with bad len from <code><ip-addr></code></td>
<td>A PIM packet with an inconsistent length was received from the indicated IP address.</td>
</tr>
<tr>
<td>Send error(<<code>error-#</code>) on <code><packet-type></code> pkt on VID <code><vid-#></code></td>
<td>Send packet failed on the indicated VLAN.</td>
</tr>
<tr>
<td>Static RP configuration failure: <code><src-ip-addr></code>, <code><multicast-addr></code></td>
<td>The configuration of a static RP for the indicated multicast group has failed on the indicated interface.</td>
</tr>
<tr>
<td>Unable to alloc a buf of size <code><size></code> for <code><memory element></code></td>
<td>PIM_DM could not allocate memory for the indicated buffer.</td>
</tr>
<tr>
<td>Unable to alloc a msg buffer for <code><system-event></code></td>
<td>Informs the user that a message buffer could not be allocated for the indicated system event.</td>
</tr>
<tr>
<td>Unable to allocate <code><table-type> table</code></td>
<td>The PIM interface has been removed due to an IP address removal or change.</td>
</tr>
<tr>
<td>Unexpected state/event <code><state>/<event></code> in <code><statemachine></code> statemach</td>
<td>PIM received an event type in a state that was not expected.</td>
</tr>
<tr>
<td>VLAN is not configured for IP.</td>
<td>A VLAN must be statically configured with a primary IP address before enabling PIM-SM on that VLAN. If the VLAN has no IP address or is configured to acquire a primary IP address by using DHCP/Bootp, it cannot be configured to support PIM-SM.</td>
</tr>
</tbody>
</table>
IP Routing Features

Contents

Overview of IP Routing ... 5-3
 IP Interfaces ... 5-4
 IP Tables and Caches .. 5-4
 IP Route Exchange Protocols ... 5-7
 IP Global Parameters for Routing Switches 5-7
 IP Interface Parameters for Routing Switches 5-9
Configuring IP Parameters for Routing Switches 5-10
 Configuring IP Addresses ... 5-10
 Changing the Router ID .. 5-10
 Configuring ARP Parameters ... 5-11
 Configuring Forwarding Parameters 5-13
 Configuring ICMP ... 5-15
Configuring Static IP Routes ... 5-17
 Static Route Types ... 5-17
 Other Sources of Routes in the Routing Table 5-18
 Static IP Route Parameters .. 5-18
 Static Route States Follow VLAN States 5-19
 Configuring a Static IP Route .. 5-19
 Displaying Static Route Information 5-21
 Configuring the Default Route 5-21
Configuring RIP .. 5-22
 Overview of RIP ... 5-22
 RIP Parameters and Defaults ... 5-23
 Configuring RIP Parameters ... 5-24
 Configuring RIP Redistribution 5-26
 Changing the Route Loop Prevention Method 5-28
 Displaying RIP Information .. 5-28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring OSPF</td>
<td>5-35</td>
</tr>
<tr>
<td>Overview of OSPF</td>
<td>5-35</td>
</tr>
<tr>
<td>Configuring OSPF</td>
<td>5-39</td>
</tr>
<tr>
<td>Displaying OSPF Information</td>
<td>5-54</td>
</tr>
<tr>
<td>OSPF Equal-Cost Multipath (ECMP) for Different Subnets Available Through the Same Next-Hop Routes</td>
<td>5-71</td>
</tr>
<tr>
<td>Configuring IRDP</td>
<td>5-74</td>
</tr>
<tr>
<td>Enabling IRDP Globally</td>
<td>5-75</td>
</tr>
<tr>
<td>Enabling IRDP on an Individual VLAN Interface</td>
<td>5-75</td>
</tr>
<tr>
<td>Displaying IRDP Information</td>
<td>5-76</td>
</tr>
<tr>
<td>Configuring DHCP Relay</td>
<td>5-77</td>
</tr>
<tr>
<td>Overview</td>
<td>5-77</td>
</tr>
<tr>
<td>DHCP Option 82</td>
<td>5-77</td>
</tr>
<tr>
<td>DHCP Packet Forwarding</td>
<td>5-91</td>
</tr>
<tr>
<td>Minimum Requirements for DHCP Relay Operation</td>
<td>5-92</td>
</tr>
<tr>
<td>UDP Broadcast Forwarding</td>
<td>5-94</td>
</tr>
<tr>
<td>Overview</td>
<td>5-94</td>
</tr>
<tr>
<td>Subnet Masking for UDP Forwarding Addresses</td>
<td>5-95</td>
</tr>
<tr>
<td>Configuring and Enabling UDP Broadcast Forwarding</td>
<td>5-96</td>
</tr>
<tr>
<td>Displaying the Current IP Forward-Protocol Configuration</td>
<td>5-98</td>
</tr>
<tr>
<td>Operating Notes for UDP Broadcast Forwarding</td>
<td>5-99</td>
</tr>
<tr>
<td>Messages Related to UDP Broadcast Forwarding</td>
<td>5-99</td>
</tr>
</tbody>
</table>
Overview of IP Routing

The switches covered in this guide offer the following IP routing features, as noted:

- **IP Static Routes** – up to 256 static routes
- **RIP** (Router Information Protocol) – supports RIP Version 1, Version 1 compatible with Version 2 (default), and Version 2
- **OSPF** (Open Shortest Path First) – the standard routing protocol for handling larger routed networks
- **IRDP** (ICMP Router Discovery Protocol) – advertises the IP addresses of the routing interfaces on this switch to directly attached host systems
- **DHCP Relay** – allows you to extend the service range of your DHCP server beyond its single local network segment

Throughout this chapter, the switches covered in this guide are referred to as “routing switches”. When IP routing is enabled on your switch, it behaves just like any other IP router.

Basic IP routing configuration consists of adding IP addresses, enabling IP routing, and enabling a route exchange protocol, such as Routing Information Protocol (RIP).

For configuring the IP addresses, refer to the chapter titled “Configuring IP Addresses” in the Management and Configuration Guide for your switch. The rest of this chapter describes IP routing and how to configure it in more detail. Use the information in this chapter if you need to change some of the IP parameters from their default values or you want to view configuration information or statistics.
IP Interfaces

On the routing switches, IP addresses are associated with individual VLANs. By default, there is a single VLAN (Default_VLAN) on the routing switch. In that configuration, a single IP address serves as the management access address for the entire device. If routing is enabled on the routing switch, the IP address on the single VLAN also acts as the routing interface.

Each IP address on a routing switch must be in a different sub-net. You can have only one VLAN interface that is in a given sub-net. For example, you can configure IP addresses 192.168.1.1/24 and 192.168.2.1/24 on the same routing switch, but you cannot configure 192.168.1.1/24 and 192.168.1.2/24 on the same routing switch.

You can configure multiple IP addresses on the same VLAN.

The number of IP addresses you can configure on an individual VLAN interface is 8.

You can use any of the IP addresses you configure on the routing switch for Telnet, Web management, or SNMP access, as well as for routing.

Note

All ProCurve devices support configuration and display of IP address in classical sub-net format (example: 192.168.1.1 255.255.255.0) and Classless Interdomain Routing (CIDR) format (example: 192.168.1.1/24). You can use either format when configuring IP address information. IP addresses are displayed in classical sub-net format only.

IP Tables and Caches

The following sections describe the IP tables and caches:

- ARP cache table
- IP route table
- IP forwarding cache

The software enables you to display these tables.
ARP Cache Table

The ARP cache contains entries that map IP addresses to MAC addresses. Generally, the entries are for devices that are directly attached to the routing switch.

An exception is an ARP entry for an interface-based static IP route that goes to a destination that is one or more router hops away. For this type of entry, the MAC address is either the destination device’s MAC address or the MAC address of the router interface that answered an ARP request on behalf of the device, using proxy ARP.

ARP Cache. The ARP cache contains dynamic (learned) entries. The software places a dynamic entry in the ARP cache when the routing switch learns a device’s MAC address from an ARP request or ARP reply from the device.

The software can learn an entry when the switch or routing switch receives an ARP request from another IP forwarding device or an ARP reply. Here is an example of a dynamic entry:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
<th>Type</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>207.95.6.102</td>
<td>0800.5afc.ea21</td>
<td>Dynamic</td>
<td>6</td>
</tr>
</tbody>
</table>

Each entry contains the destination device’s IP address and MAC address.

To configure other ARP parameters, see “Configuring ARP Parameters” on page 5-11.

IP Route Table

The IP route table contains routing paths to IP destinations.

Note

The default gateway, which you specify when you configure the basic IP information on the switch, is used only when routing is not enabled on the switch.

Routing Paths. The IP route table can receive the routing paths from the following sources:

- A directly-connected destination, which means there are no router hops to the destination
- A static IP route, which is a user-configured route
- A route learned through RIP
- A route learned through OSPF
Administrative Distance. The IP route table contains the best path to a destination. When the software receives paths from more than one of the sources listed above, the software compares the administrative distance of each path and selects the path with the lowest administrative distance. The administrative distance is a protocol-independent value from 1 – 255.

The IP route table is displayed by entering the CLI command `show ip route` from any context level in the console CLI. Here is an example of an entry in the IP route table:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Network Mask</th>
<th>Gateway</th>
<th>Type</th>
<th>Sub-Type</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.0.0</td>
<td>255.255.0.0</td>
<td>99.1.1.2</td>
<td>connected</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Each IP route table entry contains the destination’s IP address and sub-net mask and the IP address of the next-hop router interface to the destination. Each entry also indicates route type, and for OSPF routes, the sub type, and the route’s IP metric (cost). The type indicates how the IP route table received the route.

To configure a static IP route, see “Configuring a Static IP Route” on page 5-19

IP Forwarding Cache

The IP forwarding cache provides a fast-path mechanism for forwarding IP packets. The cache contains entries for IP destinations. When an ProCurve routing switch has completed processing and addressing for a packet and is ready to forward the packet, the device checks the IP forwarding cache for an entry to the packet’s destination.

- If the cache contains an entry with the destination IP address, the device uses the information in the entry to forward the packet out the ports listed in the entry. The destination IP address is the address of the packet’s final destination. The port numbers are the ports through which the destination can be reached.
- If the cache does not contain an entry, the software can create an entry in the forwarding cache.

Each entry in the IP forwarding cache has an age timer. If the entry remains unused by traffic for 12 - 36 seconds (depending on how full the cache is), the software removes the entry. The age timer is not configurable.

Note

You cannot add static entries to the IP forwarding cache.
IP Route Exchange Protocols

The switch supports the following IP route exchange protocols:

- Routing Information Protocol (RIP)
- Open Shortest Path First (OSPF)

These protocols provide routes to the IP route table. You can use one or more of these protocols, in any combination. The protocols are disabled by default. For configuration information, see the following:

- “Configuring RIP” on page 5-22
- “Configuring OSPF” on page 5-35

IP Global Parameters for Routing Switches

The following table lists the IP global parameters and the page where you can find more information about each parameter.

Table 5-1. IP Global Parameters for Routing Switches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The value that routers use to identify themselves to other routers when exchanging route information. OSPF uses the router ID to identify routers. RIP does not use the router ID.</td>
<td>The lowest-numbered IP address configured on the lowest-numbered routing interface.</td>
<td>5-10</td>
</tr>
<tr>
<td>Address Resolution Protocol (ARP)</td>
<td>A standard IP mechanism that routers use to learn the Media Access Control (MAC) address of a device on the network. The router sends the IP address of a device in the ARP request and receives the device’s MAC address in an ARP reply.</td>
<td>Enabled</td>
<td>5-11</td>
</tr>
<tr>
<td>ARP age</td>
<td>The amount of time the device keeps a MAC address learned through ARP in the device’s ARP cache. The device resets the timer to zero each time the ARP entry is refreshed and removes the entry if the timer reaches the ARP age.</td>
<td>Five minutes not configurable</td>
<td></td>
</tr>
<tr>
<td>Proxy ARP</td>
<td>An IP mechanism a router can use to answer an ARP request on behalf of a host, by replying with the router’s own MAC address instead of the host’s.</td>
<td>Disabled</td>
<td>5-13</td>
</tr>
</tbody>
</table>
Time to Live (TTL)
The maximum number of routers (hops) through which a packet can pass before being discarded. Each router decreases a packet's TTL by 1 before forwarding the packet. If decreasing the TTL causes the TTL to be 0, the router drops the packet instead of forwarding it.

<table>
<thead>
<tr>
<th>Default</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 hops</td>
<td>Refer to the chapter titled “Configuring IP Addressing” in the Management and Configuration Guide.</td>
</tr>
</tbody>
</table>

Directed broadcast forwarding
A directed broadcast is a packet containing all ones (or in some cases, all zeros) in the host portion of the destination IP address. When a router forwards such a broadcast, it sends a copy of the packet out each of its enabled IP interfaces.

Note: You also can enable or disable this parameter on an individual interface basis. See table 5-2 on page 5-9.

<table>
<thead>
<tr>
<th>Default</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>5-14</td>
</tr>
</tbody>
</table>

ICMP Router Discovery Protocol (IRDP)
An IP protocol that a router can use to advertise the IP addresses of its router interfaces to directly attached hosts. You can enable or disable the protocol at the Global CLI Config level.

You also can enable or disable IRDP and configure the following protocol parameters on an individual VLAN interface basis at the VLAN Interface CLI Config level:

- Forwarding method (broadcast or multicast)
- Hold time
- Maximum advertisement interval
- Minimum advertisement interval
- Router preference level

<table>
<thead>
<tr>
<th>Default</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>5-74</td>
</tr>
</tbody>
</table>

Static route
An IP route you place in the IP route table.

<table>
<thead>
<tr>
<th>Default</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>No entries</td>
<td>5-17</td>
</tr>
</tbody>
</table>

Default network route
The router uses the default network route if the IP route table does not contain a route to the destination. Enter an explicit default route (0.0.0.0 0.0.0.0 or 0.0.0.0/0) as a static route in the IP route table.

<table>
<thead>
<tr>
<th>Default</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>None configured</td>
<td>5-21</td>
</tr>
</tbody>
</table>
IP Interface Parameters for Routing Switches

5-2 lists the interface-level IP parameters for routing switches.

Table 5-2. IP Interface Parameters – Routing Switches

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
<th>See page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>A Layer 3 network interface address; separate IP addresses on individual VLAN interfaces.</td>
<td>None configured</td>
<td>*</td>
</tr>
<tr>
<td>Metric</td>
<td>A numeric cost the router adds to RIP routes learned on the interface. This parameter applies only to RIP routes.</td>
<td>1 (one)</td>
<td>5-24</td>
</tr>
<tr>
<td>ICMP Router Discovery Protocol (IRDP)</td>
<td>Locally overrides the global IRDP settings. See table 5-1 on page 5-7 for global IRDP information.</td>
<td>Disabled</td>
<td>5-75</td>
</tr>
<tr>
<td>IP helper address</td>
<td>The IP address of a UDP application server (such as a BootP or DHCP server) or a directed broadcast address. IP helper addresses allow the routing switch to forward requests for certain UDP applications from a client on one sub-net to a server on another subnet.</td>
<td>None configured</td>
<td>5-92</td>
</tr>
</tbody>
</table>

*Refer to the chapter titled “Configuring IP Addressing” in the Management and Configuration Guide for your routing switch.
Configuring IP Parameters for Routing Switches

The following sections describe how to configure IP parameters. Some parameters can be configured globally while others can be configured on individual VLAN interfaces. Some parameters can be configured globally and overridden for individual VLAN interfaces.

Note
This section describes how to configure IP parameters for routing switches. For IP configuration information when routing is not enabled, refer to the chapter titled “Configuring IP Addressing” in the Management and Configuration Guide for your routing switch.

Configuring IP Addresses

You can configure IP addresses on the routing switch’s VLAN interfaces. Configuring IP addresses is described in detail in the chapter titled “Configuring IP Addressing” in the Management and Configuration Guide for your switch.

Changing the Router ID

In most configurations, a routing switch has multiple IP addresses, usually configured on different VLAN interfaces. As a result, a routing switch’s identity to other devices varies depending on the interface to which the other device is attached. Some routing protocols, including Open Shortest Path First (OSPF), identify a routing switch by just one of the IP addresses configured on the routing switch, regardless of the interfaces that connect the routing switches. This IP address is the router ID.

Note
Routing Information Protocol (RIP) does not use the router ID.

By default, the router ID on an ProCurve routing switch is the lowest numbered IP interface configured on the device.

If you prefer, you can explicitly set the router ID to any valid IP address. The IP address cannot be in use on another device in the network.

Note
To display the router ID, enter the `show ip ospf` CLI command at any Manager EXEC CLI level.
To change the router ID, enter a command such as the following:

$$\text{ProCurve(config)# ip router-id 209.157.22.26}$$

Syntax: Syntax: `ip router-id <ip-addr>

The `<ip-addr>` can be any valid, unique IP address.

Note

You can specify an IP address used for an interface on the ProCurve routing switch, but do not specify an IP address in use by another device.

Configuring ARP Parameters

Address Resolution Protocol (ARP) is a standard IP protocol that enables an IP routing switch to obtain the MAC address of another device’s interface when the routing switch knows the IP address of the interface. ARP is enabled by default and cannot be disabled.

How ARP Works

A routing switch needs to know a destination’s MAC address when forwarding traffic, because the routing switch encapsulates the IP packet in a Layer 2 packet (MAC layer packet) and sends the Layer 2 packet to a MAC interface on a device directly attached to the routing switch. The device can be the packet’s final destination or the next-hop router toward the destination.

The routing switch encapsulates IP packets in Layer 2 packets regardless of whether the ultimate destination is locally attached or is multiple router hops away. Since the routing switch’s IP route table and IP forwarding cache contain IP address information but not MAC address information, the routing switch cannot forward IP packets based solely on the information in the route table or forwarding cache. The routing switch needs to know the MAC address that corresponds with the IP address of either the packet’s locally attached destination or the next-hop router that leads to the destination.

For example, to forward a packet whose destination is multiple router hops away, the routing switch must send the packet to the next-hop router toward its destination, or to a default route or default network route if the IP route table does not contain a route to the packet’s destination. In each case, the routing switch must encapsulate the packet and address it to the MAC address of a locally attached device, the next-hop router toward the IP packet’s destination.
To obtain the MAC address required for forwarding a datagram, the routing switch does the following:

■ First, the routing switch looks in the ARP cache (not the static ARP table) for an entry that lists the MAC address for the IP address. The ARP cache maps IP addresses to MAC addresses. The cache also lists the port attached to the device and, if the entry is dynamic, the age of the entry. A dynamic ARP entry enters the cache when the routing switch receives an ARP reply or receives an ARP request (which contains the sender’s IP address and MAC address). A static entry enters the ARP cache from the static ARP table (which is a separate table) when the interface for the entry comes up.

To ensure the accuracy of the ARP cache, each dynamic entry has its own age timer. The timer is reset to zero each time the routing switch receives an ARP reply or ARP request containing the IP address and MAC address of the entry. If a dynamic entry reaches its maximum allowable age, the entry times out and the software removes the entry from the table. Static entries do not age out and can be removed only by you.

■ If the ARP cache does not contain an entry for the destination IP address, the routing switch broadcasts an ARP request out all its IP interfaces. The ARP request contains the IP address of the destination. If the device with the IP address is directly attached to the routing switch, the device sends an ARP response containing its MAC address. The response is a unicast packet addressed directly to the routing switch. The routing switch places the information from the ARP response into the ARP cache.

ARP requests contain the IP address and MAC address of the sender, so all devices that receive the request learn the MAC address and IP address of the sender and can update their own ARP caches accordingly.

Note: The ARP request broadcast is a MAC broadcast, which means the broadcast goes only to devices that are directly attached to the routing switch. A MAC broadcast is not routed to other networks. However, some routers, including ProCurve routing switches, can be configured to reply to ARP requests from one network on behalf of devices on another network. See “Enabling Proxy ARP” below.

Note
If the routing switch receives an ARP request packet that it is unable to deliver to the final destination because of the ARP time-out and no ARP response is received (the routing switch knows of no route to the destination address), the routing switch sends an ICMP Host Unreachable message to the source.
Enabling Proxy ARP

Proxy ARP allows a routing switch to answer ARP requests from devices on one network on behalf of devices in another network. Since ARP requests are MAC-layer broadcasts, they reach only the devices that are directly connected to the sender of the ARP request. Thus, ARP requests do not cross routers.

For example, if Proxy ARP is enabled on a routing switch connected to two sub-nets, 10.10.10.0/24 and 20.20.20.0/24, the routing switch can respond to an ARP request from 10.10.10.69 for the MAC address of the device with IP address 20.20.20.69. In standard ARP, a request from a device in the 10.10.10.0/24 sub-net cannot reach a device in the 20.20.20.0 sub-net if the sub-nets are on different network cables, and thus is not answered.

An ARP request from one sub-net can reach another sub-net when both sub-nets are on the same physical segment (Ethernet cable), since MAC-layer broadcasts reach all the devices on the segment.

Proxy ARP is disabled by default on ProCurve routing switches. To enable Proxy ARP, enter the following commands from the VLAN context level in the CLI:

```plaintext
ProCurve(config)# vlan 1
ProCurve(vlan-1)# ip proxy-arp
```

To again disable IP proxy ARP, enter the following command:

```plaintext
ProCurve(vlan-1)# no ip proxy-arp
```

Syntax: `[no] ip proxy-arp`

Configuring Forwarding Parameters

The following configurable parameters control the forwarding behavior of ProCurve routing switches:

- Time-To-Live (TTL) threshold
- Forwarding of directed broadcasts

All these parameters are global and thus affect all IP interfaces configured on the routing switch.

To configure these parameters, use the procedures in the following sections.
Changing the TTL Threshold

The configuration of this parameter is covered in the chapter titled, “Configuring IP Addressing” in the Management and Configuration Guide for your routing switch.

Enabling Forwarding of Directed Broadcasts

A directed broadcast is an IP broadcast to all devices within a single directly-attached network or subnet. A net-directed broadcast goes to all devices on a given network. A sub-net-directed broadcast goes to all devices within a given subnet.

Note

A less common type, the all-subnets broadcast, goes to all directly-attached subnets. Forwarding for this broadcast type also is supported, but most networks use IP multicasting instead of all-subnet broadcasting.

Forwarding for all types of IP directed broadcasts is disabled by default. You can enable forwarding for all types if needed. You cannot enable forwarding for specific broadcast types.

To enable forwarding of IP directed broadcasts, enter the following CLI command:

```
ProCurve(config)# ip directed-broadcast
```

Syntax: `[no] ip directed-broadcast`

ProCurve software makes the forwarding decision based on the routing switch’s knowledge of the destination network prefix. Routers cannot determine that a message is unicast or directed broadcast apart from the destination network prefix. The decision to forward or not forward the message is by definition only possible in the last hop router.

To disable the directed broadcasts, enter the following CLI command:

```
ProCurve(config)# no ip directed-broadcast
```
Configuring ICMP

You can configure the following ICMP limits:

- **Burst-Normal** – The maximum number of ICMP replies to send per second.
- **Reply Limit** – You can enable or disable ICMP reply rate limiting.

Disabling ICMP Messages

ProCurve devices are enabled to reply to ICMP echo messages and send ICMP Destination Unreachable messages by default.

You can selectively disable the following types of Internet Control Message Protocol (ICMP) messages:

- **Echo messages** (ping messages) – The routing switch replies to IP pings from other IP devices.
- **Destination Unreachable messages** – If the routing switch receives an IP packet that it cannot deliver to its destination, the routing switch discards the packet and sends a message back to the device that sent the packet to the routing switch. The message informs the device that the destination cannot be reached by the routing switch.
- **Address Mask replies** – You can enable or disable ICMP address mask replies.

Disabling Replies to Broadcast Ping Requests

By default, ProCurve devices are enabled to respond to broadcast ICMP echo packets, which are ping requests. You can disable response to ping requests on a global basis using the following CLI method.

To disable response to broadcast ICMP echo packets (ping requests), enter the following command:

```
ProCurve(config)# no ip icmp echo broadcast-request
```

Syntax:

```
[no] ip icmp echo broadcast-request
```

If you need to re-enable response to ping requests, enter the following command:

```
ProCurve(config)# ip icmp echo broadcast-request
```
Disabling ICMP Destination Unreachable Messages

By default, when a ProCurve device receives an IP packet that the device cannot deliver, the device sends an ICMP Unreachable message back to the host that sent the packet. The following types of ICMP Unreachable messages are generated:

- Administration – The packet was dropped by the ProCurve device due to a filter or ACL configured on the device.
- Fragmentation-needed – The packet has the “Don’t Fragment” bit set in the IP Flag field, but the ProCurve device cannot forward the packet without fragmenting it.
- Host – The destination network or subnet of the packet is directly connected to the ProCurve device, but the host specified in the destination IP address of the packet is not on the network.
- Network – The ProCurve device cannot reach the network specified in the destination IP address of the packet.
- Port – The destination host does not have the destination TCP or UDP port specified in the packet. In this case, the host sends the ICMP Port Unreachable message to the ProCurve device, which in turn sends the message to the host that sent the packet.
- Protocol – The TCP or UDP protocol on the destination host is not running. This message is different from the Port Unreachable message, which indicates that the protocol is running on the host but the requested protocol port is unavailable.
- Source-route-failure – The device received a source-routed packet but cannot locate the next-hop IP address indicated in the packet’s Source-Route option.

Disabling an ICMP Unreachable message type does not change the ProCurve device’s ability to forward packets. Disabling ICMP Unreachable messages prevents the device from generating or forwarding the Unreachable messages.

To disable all ICMP Unreachable messages, enter the following command:

```
ProCurve(config)# no ip icmp unreachable
```

Syntax: `[no] ip icmp unreachable`
Disabling ICMP Redirects

You can disable ICMP redirects on the ProCurve routing switch only on a global basis, for all the routing switch interfaces. To disable ICMP redirects globally, enter the following command at the global CONFIG level of the CLI:

ProCurve(config)# no ip icmp redirects

Syntax: `[no] ip icmp redirects`
Other Sources of Routes in the Routing Table

The IP route table can also receive routes from these other sources:

- Directly-connected networks: One route is created per IP interface. When you add an IP interface, the routing switch automatically creates a route for the network the interface is in.

- RIP: If RIP is enabled, the routing switch can learn about routes from the advertisements other RIP routers send to the routing switch. If the RIP route has a lower administrative distance than any other routes from different sources to the same destination, the routing switch places the route in the IP route table. (Refer to “Administrative Distance” on page 5-6.)

- OSPF: See RIP, but substitute “OSPF” for “RIP”.

- Default route: This is a specific static route that the routing switch uses if other routes to the destination are not available. See “Configuring the Default Route” on page 5-21.

Static IP Route Parameters

When you configure a static IP route, you must specify the following parameters:

- The IP address and network mask for the route’s destination network or host.

- The route’s path, which can be one of the following:
 - the IP address of a next-hop router.
 - a “null” interface. The routing switch drops traffic forwarded to the null interface.

The routing switch also applies default values for the following routing parameters:

- **The route’s metric**: In the case of static routes, this is the value the routing switch uses when comparing a static route to routes in the IP route table from other sources to the same destination. This is a fixed metric for static IP routes, and is set to “1”.

- **The route’s administrative distance** (page 5-6): In the case of static routes, this is the value the routing switch uses to compare a static route to routes from other route sources to the same destination before placing a route in the IP route table. The default administrative distance for static IP routes is 1, but can be configured to any value in the range of 1 - 255.
The fixed metric and administrative distance values ensure that the routing switch always prefers static IP routes over routes from other sources to the same destination.

Static Route States Follow VLAN States

IP static routes remain in the IP route table only so long as the IP interface to the next-hop router is up. If the next-hop interface goes down, the software removes the static route from the IP route table. If the next-hop interface comes up again, the software adds the route back to the route table.

This feature allows the routing switch to adjust to changes in network topology. The routing switch does not continue trying to use routes on unreachable paths but instead uses routes only when their paths are reachable.

For example, the following command configures a static route to 207.95.7.0 (with a network mask of 255.255.255.0), using 207.95.6.157 as the next-hop router’s IP address.

```
ProCurve(config)# ip route 207.95.7.0/24 207.95.6.157
```

A static IP route specifies the route’s destination address and the next-hop router’s IP address or routing switch interface through which the routing switch can reach the destination. (The route is added to the routing switch’s IP route table.)

In the above example, Router A knows that 207.95.6.157 is reachable through port A2, and assumes that local interfaces within that subnet are on the same port. Router A deduces that IP interface 207.95.7.188 is also on port A2. The software automatically removes a static IP route from the route table if the next-hop VLAN used by that route becomes unavailable. When the VLAN becomes available again, the software automatically re-adds the route to the route table.

Configuring a Static IP Route

This feature includes these options:

- **Static Route**: configure a static route to a specific network or host address
- **Null Route**: configure a “null” route to discard IP traffic to a specific network or host address:
 - discard traffic for the destination, with ICMP notification to sender
 - discard traffic for the destination, without ICMP notification to sender
Syntax: [no] ip route < dest-ip-addr>/< mask-bits >
< next-hop-ip-addr | reject | blackhole > [distance]

dest-ip-addr>/< mask-bits: The route destination and network mask length for
the destination IP address. Alternatively, you can enter the mask itself.
For example, you can enter either 10.0.0.0/24 or 10.0.0.0 255.255.255.0 for a
route destination of 10.0.0.0 255.255.255.0.

next-hop-ip-addr: This IP address is the gateway for reaching the destination.
The next-hop IP address is not required to be directly reachable on a local
subnet. (If the next-hop IP address is not directly reachable, the route
will be added to the routing table as soon as a route to this address is
learned.)

reject: Specifies a null route where IP traffic for the specified destination is
discarded and an ICMP error notification is returned to the sender.

blackhole: Specifies a null route where IP traffic for the specified destination
is discarded and no ICMP error notification is returned to the sender.

distance: Specifies the administrative distance to associate with a static route.
If not specified, this value is set to a default of 1. For more on this topic,
refer to “Administrative Distance” on page 5-6. (Range: 1 - 255)
The no form of the command deletes the specified route for the specified
destination next-hop pair.

The following example configures two static routes for traffic delivery and
identifies two other null routes for which traffic should be discarded instead
of forwarded.

```
ProCurve(config)# ip route 10.10.40.0/24 10.10.10.1
ProCurve(config)# ip route 10.10.50.128/27 10.10.10.1
ProCurve(config)# ip route 10.10.20.177/32 reject
ProCurve(config)# ip route 10.10.30.0/24 blackhole
```

Figure 5-1. Examples of Configuring Static Routes
Displaying Static Route Information

The `show ip route static` command displays the current static route configuration on the routing switch. Figure 5-2 shows the configuration resulting from the static routes configured in the preceding example.

```
ProCurve(config)# show ip route static

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>VLAN</th>
<th>Type</th>
<th>Sub-Type</th>
<th>Metric</th>
<th>Dist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.20.177/32</td>
<td>reject</td>
<td></td>
<td>static</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.10.40.0/24</td>
<td>VLAN10</td>
<td>10</td>
<td>static</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.10.50.128/27</td>
<td>VLAN10</td>
<td>10</td>
<td>static</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.11.30.0/24</td>
<td>blackhole</td>
<td></td>
<td>static</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>reject</td>
<td></td>
<td>static</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

This reject (default null) route is included by default. Refer to “Static Route Types” on page 5-17.

Figure 5-2. Example of Displaying the Currently Configured Static Routes

Configuring the Default Route

You can also assign the default route and enter it in the routing table. The default route is used for all traffic that has a destination network not reachable through any other IP routing table entry. For example, if 208.45.228.35 is the IP address of your ISP router, all non-local traffic could be directed to the ISP by entering this command:

```
ProCurve(config)# ip route 0.0.0.0/0 208.45.228.35
```
Configuring RIP

This section describes how to configure RIP using the CLI interface.

To display RIP configuration information and statistics, see “Displaying RIP Information” on page 5-28.

Overview of RIP

Routing Information Protocol (RIP) is an IP route exchange protocol that uses a distance vector (a number representing distance) to measure the cost of a given route. The cost is a distance vector because the cost often is equivalent to the number of router hops between the ProCurve routing switch and the destination network.

A ProCurve routing switch can receive multiple paths to a destination. The software evaluates the paths, selects the best path, and saves the path in the IP route table as the route to the destination. Typically, the best path is the path with the fewest hops. A hop is another router through which packets must travel to reach the destination. If the ProCurve routing switch receives a RIP update from another router that contains a path with fewer hops than the path stored in the ProCurve routing switch's route table, the routing switch replaces the older route with the newer one. The routing switch then includes the new path in the updates it sends to other RIP routers, including ProCurve routing switches.

RIP routers, including ProCurve routing switches, also can modify a route's cost, generally by adding to it, to bias the selection of a route for a given destination. In this case, the actual number of router hops may be the same, but the route has an administratively higher cost and is thus less likely to be used than other, lower-cost routes. A RIP route can have a maximum cost of 15. Any destination with a higher cost is considered unreachable. Although limiting to larger networks, the low maximum hop count prevents endless loops in the network.

The switches covered in this guide support the following RIP types:

- Version 1
- V1 compatible with V2
- Version 2 (the default)
ICMP Host Unreachable Message for Undeliverable ARPs. If the routing switch receives an ARP request packet that it is unable to deliver to the final destination because of the ARP timeout and no ARP response is received (the routing switch knows of no route to the destination address), the routing switch sends an ICMP Host Unreachable message to the source.

RIP Parameters and Defaults

The following tables list the RIP parameters, their default values, and where to find configuration information.

RIP Global Parameters

5-3 lists the global RIP parameters and their default values.

Table 5-3. RIP Global Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP state</td>
<td>Routing Information Protocol V2-only.</td>
<td>Disabled</td>
</tr>
<tr>
<td>auto-summary</td>
<td>Enable/Disable advertisement of summarized routes.</td>
<td>Enabled</td>
</tr>
<tr>
<td>metric</td>
<td>Default metric for imported routes.</td>
<td>1</td>
</tr>
<tr>
<td>redistribution</td>
<td>RIP can redistribute static and connected routes. (RIP redistributes connected routes by default, when RIP is enabled.)</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

RIP Interface Parameters

5-4 lists the VLAN interface RIP parameters and their default values.

Table 5-4. RIP Interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIP version</td>
<td>The version of the protocol that is supported on the interface. The version can be one of the following: Version 1 only Version 2 only Version 1 or version 2</td>
<td>V2-only</td>
</tr>
</tbody>
</table>
Configuring RIP Parameters

Use the following procedures to configure RIP parameters on a system-wide and individual VLAN interface basis.

Enabling RIP

RIP is disabled by default. To enable it, use one of the following methods. When you enable RIP, the default RIP version is **RIPv2-only**. You can change the RIP version on an individual interface basis to **RIPv1** or **RIPv1-or-v2** if needed.

To enable RIP on a routing switch, enter the following commands:

```
ProCurve(config)# ip routing
ProCurve(config)# router rip
ProCurve(rip)# exit
ProCurve(config)# write memory
```

Syntax: [no] router rip
Note

IP routing must be enabled prior to enabling RIP. The first command in the preceding sequence enables IP routing.

Enabling IP RIP on a VLAN

To enable RIP on all IP addresses in a VLAN, use `ip rip` in the VLAN context. To enable RIP on a specific IP address in a VLAN, use `ip rip <ip-addr>` in the VLAN context.

Changing the RIP Type on a VLAN Interface

When you enable RIP on a VLAN interface, **RIPv2-only** is enabled by default. You can change the RIP type to one of the following on an individual VLAN interface basis:

- Version 1 only
- Version 2 only (the default)
- Version 1 - or - version 2

To change the RIP type supported on a VLAN interface, enter commands such as the following:

```
ProCurve(config)# vlan 1
ProCurve(vlan-1)# ip rip v1-only
ProCurve(vlan-1)# exit
ProCurve(config)# write memory
```

Syntax: `[no] ip rip <v1-only | v1-or-v2 | v2-only>`

Changing the Cost of Routes Learned on a VLAN Interface

By default, the switch interface increases the cost of a RIP route that is learned on the interface. The switch increases the cost by adding one to the route's metric before storing the route.

You can change the amount that an individual VLAN interface adds to the metric of RIP routes learned on the interface.

Note

RIP considers a route with a metric of 16 to be unreachable. Use this metric only if you do not want the route to be used. In fact, you can prevent the switch from using a specific interface for routes learned through that interface by setting its metric to 16.
To increase the cost a VLAN interface adds to RIP routes learned on that interface, enter commands such as the following:

ProCurve(config)# vlan 1
ProCurve(vlan-1)# ip rip metric 5

These commands configure vlan-1 to add 5 to the cost of each route learned on the interface.

Syntax: ip rip metric < 1-16 >

Configuring RIP Redistribution

You can configure the routing switch to redistribute connected and static routes into RIP. When you redistribute a route into RIP, the routing switch can use RIP to advertise the route to its RIP neighbors.

To configure redistribution, perform the following tasks:

1. Configure redistribution filters to permit or deny redistribution for a route based on the destination network address or interface. (optional)
2. Enable redistribution

Define RIP Redistribution Filters

Route redistribution imports and translates different protocol routes into a specified protocol type. On the switches covered in this guide, redistribution is supported for static routes and directly connected routes only. Redistribution of any other routing protocol into RIP is not currently supported. When you configure redistribution for RIP, you can specify that static or connected routes are imported into RIP routes. Likewise, OSPF redistribution supports the import of static or connected routes into OSPF routes.

To configure for redistribution, define the redistribution tables with “restrict” redistribution filters. In the CLI, use the `restrict` command for RIP at the RIP router level.

Note

Do not enable redistribution until you have configured the redistribution filters. Otherwise, the network might get overloaded with routes that you did not intend to redistribute.

Example: To configure the switch to filter out redistribution of static or connected routes on network 10.0.0.0, enter the following commands:

ProCurve(config)# router rip
ProCurve(rip)# restrict 10.0.0.0 255.0.0.0
ProCurve(rip)# write memory

Note
The default configuration permits redistribution for all default connected routes only.

Syntax: `restrict < ip-addr > < ip-mask > | < ip-addr </ prefix length >`

This command prevents any routes with a destination address that is included in the range specified by the address/mask pair from being redistributed by RIP.

Modify Default Metric for Redistribution
The default metric is a global parameter that specifies the cost applied to all RIP routes by default. The default value is 1. You can assign a cost from 1 – 15.

Example: To assign a default metric of 4 to all routes imported into RIP, enter the following commands:

```
ProCurve(config)# router rip
ProCurve(rip)# default-metric 4
```

Syntax: `default-metric < value >`

The `< value >` can be from 1 – 15. The default is 1.

Enable RIP Route Redistribution

Note
Do not enable redistribution until you have configured the redistribution filters. Otherwise, the network might get overloaded with routes that you did not intend to redistribute.

To enable redistribution of connected and static IP routes into RIP, enter the following commands.

```
0(config)# router rip
ProCurve(rip)# redistribute connected
ProCurve(rip)# redistribute static
ProCurve(rip)# write memory
```

Syntax: `[no] redistribute connected | static`
Changing the Route Loop Prevention Method

RIP can use the following methods to prevent routing loops:

- **Split horizon** - the routing switch does not advertise a route on the same interface as the one on which the routing switch learned the route.
- **Poison reverse** - the routing switch assigns a cost of 16 (“infinity” or “unreachable”) to a route before advertising it on the same interface as the one on which the routing switch learned the route. This is the default.

These loop prevention methods are configurable on an individual VLAN interface basis.

Note

These methods are in addition to RIP's maximum valid route cost of 15.

Poison reverse is enabled by default. Disabling poison reverse causes the routing switch to revert to **Split horizon**. (Poison reverse is an extension of Split horizon.) To disable Poison reverse on an interface, and thereby enable Split horizon, enter the following:

```
ProCurve(config)# vlan 1
ProCurve(vlan-1)# no ip rip poison-reverse
```

Syntax: `[no] ip rip poison-reverse`

Entering the command without the “no” option will re-enable Poison reverse.

Displaying RIP Information

All RIP configuration and status information is shown by the CLI command `show ip rip` and options off that command. The following RIP information can be displayed:

<table>
<thead>
<tr>
<th>RIP Information Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>5-29</td>
</tr>
<tr>
<td>Interface Information</td>
<td>5-31</td>
</tr>
<tr>
<td>Peer Information</td>
<td>5-32</td>
</tr>
<tr>
<td>Redistribute Information</td>
<td>5-34</td>
</tr>
<tr>
<td>Restrict Information</td>
<td>5-34</td>
</tr>
</tbody>
</table>
Displaying General RIP Information

To display general RIP information, enter `show ip rip` at any context level. The resulting display will appear similar to the following:

```
ProCurve(config)# show ip rip

RIP global parameters
RIP protocol : enabled
Auto-summary : enabled
Default Metric : 4
Distance : 120
Route changes : 0
Queries : 0

RIP interface information
IP Address | Status | Send mode | Recv mode | Metric | Auth
------------|--------|-----------|-----------|--------|------
100.1.0.1   | enabled| V2-only   | V2-only   | 5      | none
100.2.0.1   | enabled| V2-only   | V2-only   | 5      | none
100.3.0.1   | enabled| V2-only   | V2-only   | 5      | none
100.4.0.1   | enabled| V2-only   | V2-only   | 5      | none
100.10.0.1  | enabled| V2-only   | V2-only   | 5      | none
100.11.0.1  | enabled| V2-only   | V2-only   | 5      | none
100.12.0.1  | enabled| V2-only   | V2-only   | 5      | none

RIP peer information
IP Address | Bad routes | Last update timeticks
------------|------------|----------------------
```

Figure 5-3. Example of General RIP Information Listing

The display is a summary of Global RIP information, information about interfaces with RIP enabled, and information about RIP peers. The following fields are displayed:

- **RIP protocol** – Status of the RIP protocol on the router. RIP must be enabled here and on the VLAN interface for RIP to be active. The default is **disabled**.
- **Auto-summary** – Status of Auto-summary for all interfaces running RIP. If auto-summary is enabled, then subnets will be summarized to a class network when advertising outside of the given network.
- **Default Metric** – Sets the default metric for imported routes. This is the metric that will be advertised with the imported route to other RIP peers. A RIP metric is a measurement used to determine the 'best' path to network; 1 is the best, 15 is the worse, 16 is unreachable.
- **Route changes** – The number of times RIP has modified the routing switch’s routing table.
- **Queries** – The number of RIP queries that have been received by the routing switch.

- **RIP Interface Information** – RIP information on the VLAN interfaces on which RIP is enabled.
 - **IP Address** – IP address of the VLAN interface running rip.
 - **Status** – Status of RIP on the VLAN interface.
 - **Send mode** – The format of the RIP updates: RIP 1, RIP 2, or RIP 2 version 1 compatible.
 - **Recv mode** – The switch can process RIP 1, RIP 2, or RIP 2 version 1 compatible update messages.
 - **Metric** – The path “cost”, a measurement used to determine the 'best' RIP route path; 1 is the best, 15 is the worse, 16 is unreachable.
 - **Auth** – RIP messages can be required to include an authentication key if enabled on the interface.

- **RIP Peer Information** – RIP Peers are neighboring routers from which the routing switch has received RIP updates.
 - **IP Address** – IP address of the RIP neighbor.
 - **Bad routes** – The number of route entries which were not processed for any reason.
 - **Last update timeticks** – How many seconds have passed since we received an update from this neighbor.

Syntax: `show ip rip`
Displaying RIP Interface Information

To display RIP interface information, enter the `show ip rip interface` command at any context level. The resulting display will appear similar to the following:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Send mode</th>
<th>Recv mode</th>
<th>Metric</th>
<th>Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.1.0.1</td>
<td>enabled</td>
<td>V2-only</td>
<td>V2-only</td>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>100.2.0.1</td>
<td>enabled</td>
<td>V2-only</td>
<td>V2-only</td>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>100.3.0.1</td>
<td>enabled</td>
<td>V2-only</td>
<td>V2-only</td>
<td>1</td>
<td>none</td>
</tr>
<tr>
<td>100.4.0.1</td>
<td>enabled</td>
<td>V2-only</td>
<td>V2-only</td>
<td>1</td>
<td>none</td>
</tr>
</tbody>
</table>

Figure 5-4. Example of Show IP RIP Interface Output

See “RIP Interface Information” on the previous page for definitions of these fields.

You can also display the information for a single RIP VLAN interface, by specifying the VLAN ID for the interface, or specifying the IP address for the interface.

Displaying RIP interface information by VLAN ID: For example, to show the RIP interface information for VLAN 1000, use the `show ip rip interface vlan < vid >` command.

```plaintext
ProCurve# show ip rip interface vlan 4

RIP configuration and statistics for VLAN 4

RIP interface information for 100.4.0.1

  IP Address : 100.4.0.1
  Status      : enabled
  Send mode   : V2-only
  Recv mode   : V2-only
  Metric      : 1
  Auth        : none

  Bad packets received : 0
  Bad routes received  : 0
  Sent updates        : 0
```

Figure 5-5. Example of RIP Interface Output by VLAN
The information in this display includes the following fields, which are defined under “RIP Interface Information” on page 5-30: **IP Address, Status, Send mode, Recv mode, Metric, and Auth.**

The information also includes the following fields:

- **Bad packets received** – The number of packets that were received on this interface and were not processed for any reason.
- **Bad routes received** – The number of route entries that were received on this interface and were not processed for any reason.
- **Sent updates** – The number of RIP routing updates that have been sent on this interface.

Displaying RIP interface information by IP Address: For example, to show the RIP interface information for the interface with IP address 100.2.0.1, enter the **show ip rip interface** command as shown below:

```
ProCurve# show ip rip interface 100.2.0.1

RIP interface information for 100.2.0.1

  IP Address : 100.2.0.1
  Status     : enabled
  Send mode  : V2-only
  Recv mode  : V2-only
  Metric : 1
  Auth : none

  Bad packets received : 0
  Bad routes received : 0
  Sent updates : 0
```

Figure 5-6. Example of Show IP RIP Interface Output by IP Address

The information shown in this display has the same fields as for the display for a specific VLAN ID. See the previous page for the definitions of these fields.

Syntax: show ip rip interface [ip-addr | vlan <vlan-id>]

Displaying RIP Peer Information

To display RIP peer information, enter the **show ip rip peer** command at any context level.
The resulting display will appear similar to the following:

```plaintext
ProCurve# show ip rip peer
RIP peer information
     IP Address | Bad routes | Last update timeticks
--------------- | ----------- | ---------------------
100.1.0.100   | 0          | 1
100.2.0.100   | 0          | 0
100.3.0.100   | 0          | 2
100.10.0.100  | 0          | 1
```

Figure 5-7. Example of Show IP RIP Peer Output

This display lists all neighboring routers from which the routing switch has received RIP updates. The following fields are displayed:

- **IP Address** – IP address of the RIP peer neighbor.
- **Bad routes** – The number of route entries that were not processed for any reason.
- **Last update timeticks** – How many seconds have passed since the routing switch received an update from this neighbor.

Displaying RIP information for a specific peer: For example, to show the RIP peer information for the peer with IP address 100.1.0.100, enter `show ip rip peer 100.1.0.100`.

```plaintext
ProCurve# show ip rip peer 100.0.1.100
RIP peer information for 100.0.1.100
     IP Address : 100.1.0.100
     Bad routes : 0
     Last update timeticks : 2
```

Figure 5-8. Example of Show IP RIP Peer < ip-addr > Output

This display lists the following information for a specific RIP peer:

- **IP Address** – IP address of the RIP peer neighbor.
- **Bad routes** – The number of route entries which were not processed for any reason.
- **Last update timeticks** – How many seconds have passed since the routing switch received an update from this neighbor.
Displaying RIP Redistribution Information

To display RIP redistribution information, enter the `show ip rip redistribute` command at any context level:

```
ProCurve# show ip rip redistribute
RIP redistributing

Route type Status
---------- --------
connected enabled
static enabled
```

Figure 5-9. Example of Show IP RIP Redistribute Output

RIP automatically redistributes connected routes which are configured on interfaces that are running RIP, and all routes that are learned via RIP. The `router rip redistribute` command, described on page 5-26, configures the routing switch to cause RIP to advertise connected routes that are not running RIP, and static routes. The display shows whether RIP redistribution is enabled or disabled for connected and static routes.

Displaying RIP Redistribution Filter (restrict) Information

To display RIP restrict filter information, enter the `show ip rip restrict` command at any context level:

```
ProCurve# show ip rip restrict
RIP restrict list

IP Address Mask
--------------- ---------------
```

Figure 5-10. Example of Show IP RIP Restrict Output

The display shows if any routes, identified by the IP Address and Mask fields are being restricted from redistribution. The restrict filters are configured by the `router rip restrict` command described on page 5-26.
Configuring OSPF

This section describes how to configure OSPF using the CLI interface.

To display OSPF configuration information and statistics, see “Displaying OSPF Information” on page 5-54.

Overview of OSPF

OSPF is a link-state routing protocol. The protocol uses link-state advertisements (LSA) to update neighboring routers regarding its interfaces and information on those interfaces. The switch floods these LSAs to all neighboring routers to update them regarding the interfaces. Each router maintains an identical database that describes its area topology to help a router determine the shortest path between it and any neighboring router.

The switches covered in this guide support the following types of LSAs, which are described in RFC 2328:

- Router link
- Network link
- Summary link
- Autonomous system (AS) summary link
- AS external link

OSPF is built upon a hierarchy of network components. The highest level of the hierarchy is the **Autonomous System (AS)**. An autonomous system is defined as a number of networks, all of which share the same routing and administration characteristics.

An AS can be divided into multiple **areas**. Each area represents a collection of contiguous networks and hosts. Areas define the limit to which link-state advertisements are broadcast, thereby limiting the amount of flooding that occurs within the network. An area is represented in OSPF by either an IP address or a number.

You can further limit the broadcast area of flooding by defining an area range. The area range allows you to assign an aggregate value to a range of IP addresses. This aggregate value becomes the address that is advertised instead all of the individual addresses it represents being advertised. You can assign up to 8 ranges in an OSPF area.
An OSPF router can be a member of multiple areas. Routers with membership in multiple areas are known as Area Border Routers (ABRs). Each ABR maintains a separate topological database for each area the router is in. Each topological database contains all of the LSA databases for each router within a given area. The routers within the same area have identical topological databases. The ABR is responsible for forwarding routing information or changes between its border areas.

An Autonomous System Boundary Router (ASBR) is a router that is running multiple protocols and serves as a gateway to routers outside an area and those operating with different protocols. The ASBR is able to import and translate different protocol routes into OSPF through a process known as redistribution. For more details on redistribution and configuration examples, see “Enabling Route Redistribution” on page 5-51.

Designated Routers in Multi-Access Networks

In a network that has multiple routers attached, OSPF elects one router to serve as the designated router (DR) and another router on the segment to act as the backup designated router (BDR). This arrangement minimizes the amount of repetitive information that is forwarded on the network by forwarding all messages to the designated router and backup designated routers responsible for forwarding the updates throughout the network.

Designated Router Election

In a network with no designated router and no backup designated router, the neighboring router with the highest priority is elected as the DR, and the router with the next largest priority is elected as the BDR.

If the DR goes off-line, the BDR automatically becomes the DR. The router with the next highest priority becomes the new BDR.

Note

Priority is a configurable option at the interface level. You can use this parameter to help bias one switch as the DR.

If two neighbors share the same priority, the router with the highest router ID is designated as the DR. The router with the next highest router ID is designated as the BDR.

Note

By default, the router ID is the lowest numbered IP address configured on the device. For more information or to change the router ID, see “Changing the Router ID” on page 5-10.
When multiple ProCurve switches on the same network are declaring themselves as DRs, then both priority and router ID are used to select the designated router and backup designated routers.

When only one router on the network claims the DR role despite neighboring routers with higher priorities or router IDs, this router remains the DR. This is also true for BDRs.

The DR and BDR election process is performed when one of the following events occurs:

- an interface is in a waiting state and the wait time expires
- an interface is in a waiting state and a hello packet is received that addresses the BDR
- a change in the neighbor state occurs, such as:
 - a neighbor state transitions from 2 or higher
 - communication to a neighbor is lost
 - a neighbor declares itself to be the DR or BDR for the first time

OSPF RFC 1583 and 2328 Compliance

The switches covered in this guide are configured, by default, to be compliant with the RFC 1583 OSPF V2 specification. These switches can also be configured to operate with the latest OSPF standard, RFC 2328.

Note

For details on how to configure the system to operate with the RFC 2328, see “Configuring OSPF” on page 5-39.

Reduction of Equivalent AS External LSAs

An OSPF ASBR uses AS External link advertisements (AS External LSAs) to originate advertisements of a route to another routing domain, such as a RIP domain. The ASBR advertises the route to the external domain by flooding AS External LSAs to all the other OSPF routers (except those inside stub networks) within the local OSPF Autonomous System (AS).

In some cases, multiple ASBRs in an AS can originate equivalent LSAs. The LSAs are equivalent when they have the same cost, the same next hop, and the same destination. The ProCurve switch optimizes OSPF by eliminating duplicate AS External LSAs in this case. The switch with the lower router ID flushes the duplicate External LSAs from its database and thus does not flood the duplicate External LSAs into the OSPF AS. AS External LSA reduction therefore reduces the size of the switch’s link state database.
This enhancement implements the portion of RFC 2328 that describes AS External LSA reduction. This enhancement is enabled by default, requires no configuration, and cannot be disabled.

OSPF eliminates duplicate AS External LSAs. When two or more switches covered in this guide configured as ASBRs have equal-cost routes to the same next-hop router in an external routing domain, the ASBR with the highest router ID floods the AS External LSAs for the external domain into the OSPF AS, while the other ASBRs flush the equivalent AS External LSAs from their databases. As a result, the overall volume of route advertisement traffic within the AS is reduced and the switches that flush the duplicate AS External LSAs have more memory for other OSPF data.

Algorithm for AS External LSA Reduction. The AS External LSA reduction feature behavior changes under the following conditions:

- **There is one ASBR advertising (originating) a route to the external destination, but one of the following happens:**
 - A second ASBR comes on-line
 - A second ASBR that is already on-line begins advertising an equivalent route to the same destination.

 In either case above, the ProCurve switch with the higher router ID floods the AS External LSAs and the other ProCurve switch flushes its equivalent AS External LSAs.

- **One of the ASBRs starts advertising a route that is no longer equivalent to the route the other ASBR is advertising.** In this case, the ASBRs each flood AS External LSAs. Since the LSAs either no longer have the same cost or no longer have the same next-hop router, the LSAs are no longer equivalent, and the LSA reduction feature no longer applies.

- **The ASBR with the higher router ID becomes unavailable or is reconfigured so that it is no longer an ASBR.** In this case, the other ASBR floods the AS External LSAs.
Dynamic OSPF Activation and Configuration

OSPF is automatically activated when you enable it. The protocol does not require a software reload.

Without ever having to reset the switch, you can change and save all the OSPF configuration options, including the following:

- all OSPF interface-related parameters (for example: area, hello timer, router dead time cost, priority, re-transmission time, transit delay)
- all area parameters
- all area range parameters
- all virtual-link parameters
- all global parameters
- creation and deletion of an area, interface or virtual link
- changes to address ranges
- changes to global values for redistribution
- addition of new virtual links

The only configuration change that requires you to disable and then re-enable OSPF operation is reconfiguring the Router ID.

Configuring OSPF

To begin using OSPF on the switch, perform the steps outlined below:

1. Enable routing on the routing switch.
1. Enable OSPF on the routing switch.
2. Assign the areas to which the routing switch will be attached.
3. Assign individual VLAN interfaces to the OSPF areas.
4. Define redistribution “restrict” filters, if desired.
5. Enable redistribution, if you defined redistribution filters.
6. Modify default global and interface parameters as required.
7. Modify OSPF standard compliance, if desired.

Note

OSPF is automatically enabled without a system reset.
Configuration Rules

- If the switch is to operate as an ASBR, you must enable redistribution. When you do that, ASBR capability is automatically enabled.
- All VLAN interfaces on which you wish to run OSPF must be assigned to one of the defined areas. When a VLAN interface is assigned to an area, the IP address is automatically included in the assignment. To include additional addresses, you must enable OSPF on them separately, or use the “all” option in the assignment.

OSPF Parameters

You can modify or set the following global and interface OSPF parameters.

Global Parameters:

- Modify OSPF standard compliance setting.
- Assign an area.
- Define an area range.
- Define the area virtual link.
- Set global default metric for OSPF.
- Define redistribution metric type.
- Enable redistribution.
- Define redistribution restrict filters.
- Modify OSPF Traps generated.

Interface Parameters:

- Assign interfaces to an area.
- Select the authentication method (simple password or MD5) and the authentication key for the interface.
- Modify the cost for a link.
- Modify the dead interval.
- Modify the priority of the interface.
- Modify the retransmit interval for the interface.
- Modify the transit delay of the interface.
When using the CLI, you set global level parameters at the OSPF CONFIG Level of the CLI. To reach that level, make sure routing is enabled and then enter the command `router ospf` at the global CONFIG Level. Interface parameters for OSPF are set at the VLAN CONFIG Level using the CLI command `ip ospf`.

Enabling OSPF

When you enable OSPF, the protocol is automatically activated. To enable OSPF, use the CLI commands:

```
ProCurve(config)# ip routing
ProCurve(config)# router ospf
```

The first command enables routing on the switch. The second command launches you into the OSPF router level where you can assign areas and modify OSPF global parameters.

Assigning OSPF Areas

Once OSPF is enabled on the system, you can assign areas. Assign an IP address or number as the **area ID** for each area. The area ID is representative of only the first IP address. To include other IP addresses, you must enable OSPF on them separately, or use the “all” option in the assignment. Each VLAN interface on the switch can support 16 areas.

You can assign subnets individually to areas. The limit on the number of areas is 16.

An area can be **normal** or a **stub**.

- **Normal** – A switch within an OSPF normal area can send and receive External Link State Advertisements (LSAs).
- **Stub** – A switch within an OSPF stub area cannot send or receive External LSAs. In addition, the routing switches in an OSPF stub area must use a default route to the area’s Area Border Router (ABR) or Autonomous System Boundary Router (ASBR) to send traffic out of the area.
Example: Here is an example of the commands to set up several OSPF areas.

```
ProCurve(ospf)# area 192.5.1.0
ProCurve(ospf)# area 200.5.0.0
ProCurve(ospf)# area 0.0.0.0
ProCurve(ospf)# write memory
```

Syntax: `area < num > | < ip-addr > [normal | stub < cost > [no-summary]]`

The `< num > | < ip-addr >` parameter specifies the area number, which can be a number or in IP address format. If you specify a number, the number can be from 0 – 4,294,967,295.

The `< cost >` specifies the cost of the default route to be injected into the stub area, if this routing switch is an ABR. The value can be from 1 – 16,777,215. If you configure a stub area, you must specify the cost. There is no default. Normal areas do not use the cost parameter.

Note

The switch CLI requires that you enter a cost value when specifying the stub parameter, but this cost value is ignored. The actual cost is provided by the Area Border Router (ABR).

The `no-summary` parameter applies only to stub areas and disables summary LSAs from being sent into the area. See “Disabling Summary LSAs” below.

Disabling Summary LSAs

By default, the switch sends summary LSAs (LSA type 3) into stub areas. You can further reduce the number of LSAs sent into a stub area by configuring the switch to stop sending summary LSAs into the area. You can disable the summary LSAs when you are configuring the stub area or later after you have configured the area.

This feature disables origination of summary LSAs, but the switch still accepts summary LSAs from OSPF neighbors and floods them to other neighbors. The switch can form adjacencies with other routers regardless of whether summarization is enabled or disabled for areas on each switch.

When you enter a command to disable the summary LSAs, the change takes effect immediately. If you apply the option to a previously configured area, the switch flushes all of the summary LSAs it has generated (as an ABR) from the area.
This feature applies only when the switch is configured as an Area Border Router (ABR) for the area. To completely prevent summary LSAs from being sent to the area, disable the summary LSAs on each OSPF router that is an ABR for the area.

To disable summary LSAs for a stub area, enter commands such as the following:

ProCurve(config-ospf-router)# area 40 stub 3 no-summary

Assigning an Area Range (optional)

You can assign a range for an area, but it is not required. Ranges allow a specific IP address and mask to represent a range of IP addresses within an area, so that only that reference range address is advertised to the network, instead of all the addresses within that range. Each area can have up to 8 range addresses.

Example. To define an area range for sub-nets on 193.45.5.1 and 193.45.6.2, enter the following commands:

ProCurve(config)# router ospf
ProCurve(ospf)# area 192.45.5.1 range 193.45.0.0 255.255.0.0
ProCurve(ospf)# area 193.45.6.2 range 193.45.0.0 255.255.0.0

Syntax: area < ospf-area-id | backbone > range < ip-addr / mask-length > [no-advertise]

The < ospf-area-id > parameter specifies the area number, which can be in IP address format.

The < ip-addr > parameter following range specifies the IP address portion of the range. The software compares the address with the significant bits in the mask. All network addresses that match this comparison are summarized in a single route advertised by the switch.

The < mask-length > parameter specifies the portions of the IP address that a route must contain to be summarized in the summary route. In the example above, all networks that begin with 209.157 are summarized into a single route.
Assigning VLANs to an Area

Once you define OSPF areas, you can assign VLANs to the areas. All VLANs in the switch must be assigned to one of the defined areas on an OSPF router. When a VLAN is assigned to an area, all IP addresses are automatically included in the assignment unless you enter a specific IP address.

Example: To assign VLAN 8 of Switch A to area 192.5.0.0 and include *all* IP addresses configured in VLAN 8, enter the following commands:

```
ProCurve(ospf)# vlan 8
ProCurve(vlan-8)# ip ospf area 192.5.0.0
```

Example. To assign VLAN 10 of Switch B to area 192.5.0.0 and include only one IP address (192.5.100.1) from VLAN 10, enter the following commands:

```
ProCurve(ospf)# vlan 8
ProCurve(vlan-10)# ip ospf 192.5.100.1 area 192.5.0.0
```

Modifying Interface Defaults

OSPF has interface parameters that you can configure. For simplicity, each of these parameters has a default value. No change to these default values is required except as needed for specific network configurations.

VLAN default values can be modified using the following CLI commands at the **VLAN interface level** of the CLI:

- `ip ospf all`
- `ip ospf area`
- `ip ospf < ip-addr>`
- `ip ospf authentication-key < password>`
- `ip ospf md5-auth-key-chain < chain-name-str>`
- `ip ospf cost < num>`
- `ip ospf dead-interval < value>`
- `ip ospf hello-interval < value>`
- `ip ospf priority < value>`
- `ip ospf retransmit-interval < value>`
- `ip ospf transmit-delay < value>`

For a complete description of these parameters, see the summary of OSPF interface parameters in the next section.
OSPФ Interface Parameters

The following parameters apply to OSPФ interfaces.

Area: Assigns an interface to a specific area. You can assign either an IP address or number to represent an OSPФ Area ID. If you assign a number, it can be any value from 0 – 4,294,967,295.

Authentication-key: OSPФ supports two methods of authentication for each VLAN—simple password and MD5. In addition, the value can be set to none, meaning no authentication is performed. Only one method of authentication can be active on a subnet at a time. The default authentication value is none. The two authentication methods are configured by different commands:

- **Simple password** – Use the `ip ospf authentication-key <password>` command. The simple password method of authentication requires you to configure an alphanumeric password on an interface. The simple password setting takes effect immediately. All OSPФ packets transmitted on the interface contain this password. Any OSPФ packet that is received on the interface is checked for this password. If the password is not present, then the packet is dropped. The password can be up to eight characters long.

- **MD5** – Use the `ip ospf md5-auth-key-chain <chain-name-str>` command. The MD5 method of authentication uses key chains that you configure through the Key Management System (KMS – described in your switch Security Guide). The `<chain-name-str>` is the name of the key chain that you have previously configured by using the KMS commands.

Cost: Indicates the overhead required to send a packet across an interface. You can modify the cost to differentiate between 100 Mbps and 1000 Mbps (1 Gbps) links. The default cost is always 1.

Dead-interval: Indicates the number of seconds that a neighbor router waits for a hello packet from the current switch before declaring the switch down. The value can be from 1 – 2,147,483,647 seconds. The default is 40 seconds.

Hello-interval: Represents the length of time between the transmission of hello packets. The value can be from 1 – 65535 seconds. The default is 10 seconds.

Priority: Allows you to modify the priority of an OSPФ router. The priority is used when selecting the designated router (DR) and backup designated routers (BDRs). The value can be from 0 – 255 (with 255 as the highest priority). The default is 1. If you set the priority to 0, the switch does not participate in DR and BDR election.
Retransmit-interval: The time between retransmissions of link-state advertisements (LSAs) to adjacent routers for this interface. The value can be from 0 – 3600 seconds. The default is 5 seconds.

Transit-delay: The time it takes to transmit Link State Update packets on this interface. The value can be from 0 – 3600 seconds. The default is 1 second.

Assigning Virtual Links

It is highly recommended that all ABRs (area border routers) have either a direct or indirect link to the OSPF backbone area (0.0.0.0 or 0). If an ABR does not have a physical link to the area backbone, the ABR can configure a virtual link to another router within the same area, which has a physical connection to the area backbone.

Note

A backbone area can be purely virtual with no physical backbone links. Also note that virtual links can be “daisy chained”. If so, it may not have one end physically connected to the backbone.

The path for a virtual link is through an area shared by the neighbor ABR (router with a physical backbone connection), and the ABR requiring a logical connection to the backbone.

Two parameters must be defined for all virtual links—**transit area ID** and **neighbor router**.

- The **transit area ID** represents the shared area of the two ABRs and serves as the connection point between the two routers. This number should match the area ID value.

- The **neighbor router** field is the router ID (IP address) of the router that is physically connected to the backbone, when assigned from the router interface requiring a logical connection. When assigning the parameters from the router with the physical connection, the router ID is the IP address of the router requiring a logical connection to the backbone.

Note

By default, the router ID is the lowest numbered IP address configured on the device. For more information or to change the router ID, see “Changing the Router ID” on page 5-10.

Note

When you establish an area virtual link, you must configure it on both of the routers (both ends of the virtual link).
Example. Figure 5-11 shows an OSPF area border router, Routing Switch-A, that is cut off from the backbone area (Area 0). To provide backbone access to Routing Switch-A, you can add a virtual link between Routing Switch-A and Routing Switch-C using Area 1 as a transit area. To configure the virtual link, you define the link on the router that is at each end of the link. No configuration for the virtual link is required on the routers in the transit area.

To configure the virtual link on Routing Switch-A, enter the following commands:

ProCurve(ospf)# area 1 virtual-link 209.157.22.1
ProCurve(ospf)# write memory
To configure the virtual link on Routing Switch-C, enter the following commands:

ProCurve(ospf)# area 1 virtual-link 10.0.0.1
ProCurve(ospf)# write memory

Syntax: area <ip-addr> | <num> virtual-link <router-id>

The *area* `<ip-addr> | <num>` parameter specifies the transit area.

The `<router-id>` parameter specifies the router ID of the OSPF router at the remote end of the virtual link. To display the router ID, enter the `show ip` command.

See “Modify Virtual Link Parameters” below for descriptions of the optional parameters.

Modifying Virtual Link Parameters

OSPF has some parameters that you can modify for virtual links. Notice that these are a subset of the parameters that you can modify for physical interfaces. **cost** is not configured for virtual links, it is calculated by route calculation.

You can modify default values for virtual links using the following CLI command at the OSPF router level of the CLI, as shown in the following syntax:

```
Syntax: area <num> | <ip-addr> virtual-link <ip-addr> [authentication-key <string> | md5-auth-key-chain <chain-name-str>] [dead-interval <num>] [hello-interval <num>] [retransmit-interval <num>] [transmit-delay <num>]
```

The parameters are described below. For syntax information, at the CLI prompt, enter the command `area help`.

Virtual Link Parameter Descriptions

You can modify the following virtual link interface parameters:

Authentication Key: OSPF supports two methods of authentication for each virtual link—**simple password** and **MD5**. In addition, the value can be set to **none**, meaning no authentication is performed. Only one method of authentication can be active on a subnet at a time. The default authentication value is none. The two authentication methods are configured by different commands:
IP Routing Features

Configuring OSPF

- **Simple password** – Use the `area <num> | <ip-addr> virtual-link <ip-addr> authentication-key <password>` command. The simple password method of authentication requires you to configure an alphanumeric password on an interface. The simple password setting takes effect immediately. All OSPF packets transmitted on the interface contain this password. Any OSPF packet that is received on the interface is checked for this password. If the password is not present, then the packet is dropped. The password can be up to eight characters long.

- **MD5** – Use the `area <num> | <ip-addr> virtual-link <ip-addr> md5-auth-key-chain <chain-name-str>` command. The MD5 method of authentication uses key chains that you configure through the Key Management System (KMS – described in your switch Security Guide). The `<chain-name-str>` is the name of the key chain that you have previously configured by using the KMS commands.

Hello Interval: The length of time between the transmission of hello packets. The range is 1 – 65535 seconds. The default is 10 seconds.

Retransmit Interval: The interval between the re-transmission of link state advertisements to router adjacencies for this interface. The range is 0 – 3600 seconds. The default is 5 seconds.

Transmit Delay: The period of time it takes to transmit Link State Update packets on the interface. The range is 0 – 3600 seconds. The default is 1 second.

Dead Interval: The number of seconds that a neighbor router waits for a hello packet from the current routing switch before declaring the routing switch down. The range is 1 – 65535 seconds. The default is 40 seconds.

Defining Redistribution Filters

Route redistribution imports and translates different protocol routes into a specified protocol type. Redistribution is supported for only static routes and directly connected routes. Redistribution of any other routing protocol into OSPF is not currently supported. When you configure redistribution for OSPF, you can specify that static or connected routes are imported into OSPF routes. Likewise, RIP redistribution supports the import of static or connected routes into RIP routes.

To configure for redistribution, define the redistribution tables with restrict redistribution filters. In the CLI, use the `restrict` command for OSPF at the OSPF router level.
IP Routing Features
Configuring OSPF

Note

Do not enable redistribution until you have configured the redistribution filters. Otherwise, the network might get overloaded with routes that you did not intend to redistribute.

Example: To configure the switch acting as an ASBR to filter out redistribution of static or connected routes on network 10.0.0.0, enter the following commands:

```
ProCurve(config)# router ospf
ProCurve(ospf)# restrict 10.0.0.0 255.0.0.0
ProCurve(ospf)# write memory
```

Note

Redistribution is permitted for all routes by default.

Syntax: restrict <ip-addr> <ip-mask> | <ip-addr>/<prefix length>

This command prevents any routes with a destination address that is included in the range specified by the address/mask pair from being redistributed by OSPF.

Modifying Default Metric for Redistribution

The default metric is a global parameter that specifies the cost applied to all OSPF routes by default. The default value is 10. You can assign a cost from 1 – 16,777,215.

Example: To assign a default metric of 4 to all routes imported into OSPF, enter the following commands:

```
ProCurve(config)# router ospf
ProCurve(ospf)# default-metric 4
```

Syntax: default-metric <value>

The <value> can be from 1 – 16,777,215. The default is 10.
Enabling Route Redistribution

Note
Do not enable redistribution until you have configured the redistribution “restrict” filters. Otherwise, the network might get overloaded with routes that you did not intend to redistribute.

To enable redistribution of connected and static IP routes into OSPF, enter the following commands.

```
ProCurve(config)# router ospf
ProCurve(ospf)# redistribution connected
ProCurve(ospf)# redistribution static
ProCurve(ospf)# write memory
```

Syntax: `[no] redistribution connected | static`

Modifying Redistribution Metric Type

The redistribution metric type is used by default for all routes imported into OSPF. Type 1 metrics are the same “units” as internal OSPF metrics and can be compared directly. Type 2 metrics are not directly comparable, and are treated as larger than the largest internal OSPF metric. The default value is type 2.

To modify the default value to type 1, enter the following command:

```
ProCurve(config-ospf-router)# metric-type type1
```

Syntax: `metric-type type1 | type2`

The default is `type2`.

Administrative Distance

The switch can learn about networks from various protocols, including RIP, and OSPF. Consequently, the routes to a network may differ depending on the protocol from which the routes were learned. For the switches, covered in this guide the administrative distance for OSPF routes is set at 110.

The switch selects one route over another based on the source of the route information. To do so, the switch can use the administrative distances assigned to the sources.
Modifying OSPF Traps Generated

OSPF traps as defined by RFC 1850 are supported on the switches covered in this guide. OSPF trap generation is enabled by default.

When using the CLI, you can disable all or specific OSPF trap generation by entering the following CLI command:

```
ProCurve(ospf)# no snmp-server trap ospf
```

To later re-enable the trap feature, enter the command:

```
ProCurve(ospf)# snmp-server trap ospf
```

To disable a specific OSPF trap, enter the following command:

```
ProCurve(ospf)# no snmp-server trap ospf <ospf-trap>.
```

These commands are at the OSPF Router Level of the CLI.

Here is a summary of OSPF traps supported on the switches covered in this guide, and their associated MIB objects from RFC 1850:

Table 5-5. OSPF Traps and Associated MIB Objects

<table>
<thead>
<tr>
<th>OSPF Trap Name</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-state-change-trap</td>
<td>ospflfstateChange</td>
</tr>
<tr>
<td>virtual-interface-state-change-trap</td>
<td>ospfVirtlfStateChange</td>
</tr>
<tr>
<td>neighbor-state-change-trap</td>
<td>ospfNbrStateChange</td>
</tr>
<tr>
<td>virtual-neighbor-state-change-trap</td>
<td>ospfVirtNbrStateChange</td>
</tr>
<tr>
<td>interface-config-error-trap</td>
<td>ospflfConfigError</td>
</tr>
<tr>
<td>virtual-interface-config-error-trap</td>
<td>ospfVirtlfConfigError</td>
</tr>
<tr>
<td>interface-authentication-failure-trap</td>
<td>ospflfAuthFailure</td>
</tr>
<tr>
<td>virtual-interface-authentication-failure-trap</td>
<td>ospfVirtlfAuthFailure</td>
</tr>
<tr>
<td>interface-receive-bad-packet-trap</td>
<td>ospflfrxBadPacket</td>
</tr>
<tr>
<td>virtual-interface-receive-bad-packet-trap</td>
<td>ospfVirtlfRxBadPacket</td>
</tr>
<tr>
<td>interface-retransmit-packet-trap</td>
<td>ospfTxRetransmit</td>
</tr>
<tr>
<td>virtual-interface-retransmit-packet-trap</td>
<td>ospfVirtlfTxRetransmit</td>
</tr>
</tbody>
</table>
IP Routing Features
Configuring OSPF

OSPF Trap Name

<table>
<thead>
<tr>
<th>OSPF Trap Name</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>originate-lsa-trap</td>
<td>ospfOriginateLsa</td>
</tr>
<tr>
<td>originate-maxage-lsa-trap</td>
<td>ospfMaxAgeLsa</td>
</tr>
<tr>
<td>link-state-database-overflow-trap</td>
<td>ospfLsdbOverflow</td>
</tr>
<tr>
<td>link-state-database-approaching-overflow-trap</td>
<td>ospfLsdbApproachingOverflow</td>
</tr>
</tbody>
</table>

Examples:

1. To stop an OSPF trap from being collected, use the following CLI command:

   ```
   ProCurve(ospf)# no trap < ospf-trap >
   ```

2. To disable reporting of the neighbor-state-change-trap, enter the following command:

   ```
   ProCurve(ospf)# no trap neighbor-state-change-trap
   ```

3. To reinstate the trap, enter the following command:

   ```
   ProCurve(ospf)# trap neighbor-state-change-trap
   ```

Syntax:

[no] snmp-server trap ospf < ospf-trap >

Modifying OSPF Standard Compliance Setting

Note

All routes in an AS should be configured with the same compliance setting. If any routers in a domain support only RFC 1583, then all routers must be configured with 1583 compatibility.

If all the routers support RFC 2178 or RFC 2328, you should disable RFC 1583 compatibility on all the routers in the domain, since these standards are more robust against routing loops on external routes.

The switch is configured, by default, to be compliant with the RFC 1583 OSPF V2 specification.

To configure a switch to operate with the latest OSPF standard, RFC 2328, enter the following commands:

```
ProCurve(config)# router ospf
ProCurve(ospf)# no rfc1583-compatibility
```

Syntax: [no] rfc1583-compatibility
Displaying OSPF Information

You can use CLI commands to display the following OSPF information:

<table>
<thead>
<tr>
<th>OSPF Information Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>5-54</td>
</tr>
<tr>
<td>Area information</td>
<td>5-56</td>
</tr>
<tr>
<td>External link state information</td>
<td>5-57</td>
</tr>
<tr>
<td>Interface information</td>
<td>5-58</td>
</tr>
<tr>
<td>Link state information</td>
<td>5-61</td>
</tr>
<tr>
<td>Neighbor information</td>
<td>5-63</td>
</tr>
<tr>
<td>Route information</td>
<td>5-69</td>
</tr>
<tr>
<td>Virtual Neighbor information</td>
<td>5-66</td>
</tr>
<tr>
<td>Virtual Link information</td>
<td>5-67</td>
</tr>
</tbody>
</table>

Displaying General OSPF Configuration Information

To display general OSPF configuration information, enter `show ip ospf general` at any CLI level:

```
ProCurve# show ip ospf general

OSPF General Status

    OSPF protocol : enabled
    Router ID      : 10.0.8.36
    RFC 1583 compatibility : compatible
    Default import metric : 1
    Default import metric type : external type 2
    Area Border : yes
    AS Border : yes
    External LSA Count : 9
    External LSA Checksum Sum : 408218
    Originate New LSA Count : 24814
    Receive New LSA Count : 14889
```

Figure 5-12. Example of Show IP OSPF General Output
Syntax: show ip ospf general

The following fields are shown in the OSPF general status display:

Table 5-6. CLI Display of OSPF General Information

<table>
<thead>
<tr>
<th>This Field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF protocol</td>
<td>indicates whether OSPF is currently enabled.</td>
</tr>
<tr>
<td>Router ID</td>
<td>the Router ID that this routing switch is currently using to identify itself</td>
</tr>
<tr>
<td>RFC 1583 compatibility</td>
<td>indicates whether the routing switch is currently using RFC 1583 (compatible) or RFC 2328 (non-compatible rules for calculating external routes.</td>
</tr>
<tr>
<td>Default import metric</td>
<td>indicates the default metric that will be used for any routes redistributed into OSPF by this routing switch</td>
</tr>
<tr>
<td>Default import metric type</td>
<td>indicates the metric type (type 1 or type 2) that will be used for any routes redistributed into OSPF by this routing switch</td>
</tr>
<tr>
<td>Area Border</td>
<td>indicates whether this routing switch is currently acting as an area border router</td>
</tr>
<tr>
<td>AS Border</td>
<td>indicates whether this routing switch is currently acting as an autonomous system border router (redistributing routes)</td>
</tr>
<tr>
<td>External LSA Count</td>
<td>indicates the total number of external LSAs currently in the routing switch’s link state database</td>
</tr>
<tr>
<td>External LSA Checksum Sum</td>
<td>the sum of the checksums of all external LSAs currently in the routing switch’s link state database (quick check for whether database is in sync with other routers in the routing domain)</td>
</tr>
<tr>
<td>Originate New LSA Count</td>
<td>count of the number of times this switch has originated a new LSA</td>
</tr>
<tr>
<td>Receive New LSA Count</td>
<td>count of the number of times this switch has received a new LSA</td>
</tr>
</tbody>
</table>
Displaying OSPF Area Information

To display OSPF area information, enter `show ip ospf area` at any CLI level:

```
ProCurve> show ip ospf area

OSPF Area Information

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Type</th>
<th>Cost</th>
<th>SPFR</th>
<th>ABR</th>
<th>ASBR</th>
<th>LSA</th>
<th>Chksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>normal</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0x0000781f</td>
</tr>
<tr>
<td>192.147.60.0</td>
<td>normal</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0x0000fee6</td>
</tr>
<tr>
<td>192.147.80.0</td>
<td>stub</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0x000181cd</td>
</tr>
</tbody>
</table>
```

Figure 5-13. Example of Show IP OSPF Area Output

Syntax: `show ip ospf area [ospf-area-id]`

The `[ospf-area-id]` parameter shows information for the specified area. If no area is specified, information for all the OSPF areas configured is displayed.

The OSPF area display shows the following information:

Table 5-7. CLI Display of OSPF Area Information

<table>
<thead>
<tr>
<th>This Field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>The identifier for this area.</td>
</tr>
<tr>
<td>Type</td>
<td>The area type, which can be either “normal” or “stub”.</td>
</tr>
<tr>
<td>Cost</td>
<td>The metric for the default route that the routing switch will inject into a stub area if the routing switch is an ABR for the area. This value only applies to stub areas.</td>
</tr>
<tr>
<td>SPFR</td>
<td>The number of times the routing switch has run the shortest path first route calculation for this area.</td>
</tr>
<tr>
<td>ABR</td>
<td>The number of area border routers in this area.</td>
</tr>
<tr>
<td>ASBR</td>
<td>The number of autonomous system border routers in this area.</td>
</tr>
<tr>
<td>LSA</td>
<td>The number of LSAs in the link state database for this area.</td>
</tr>
<tr>
<td>Chksum(Hex)</td>
<td>The sum of the checksums of all LSAs currently in the area’s link state database. This value can be compared to the value for other routers in the area to verify database synchronization.</td>
</tr>
</tbody>
</table>
Displaying OSPF External Link State Information

To display external link state information, enter `show ip ospf external-link-state` at any CLI level. When you enter this command, an output similar to the following is displayed:

```
ProCurve# show ip ospf external-link-state

Link State ID | Router ID   | Age   | Sequence #  | Checksum
---------------|-------------|-------|-------------|----------
10.3.7.0       | 10.0.8.37   | 232   | 0x80000005  | 0x0000d99f
10.3.8.0       | 10.0.8.37   | 232   | 0x80000005  | 0x0000cea9
10.3.9.0       | 10.0.8.37   | 232   | 0x80000005  | 0x0000c3b3
10.3.10.0      | 10.0.8.37   | 232   | 0x80000005  | 0x0000b8bd
10.3.33.0      | 10.0.8.36   | 1098  | 0x800009cd  | 0x0000b9dd
```

Figure 5-14. Example of Show IP OSPF External-Link-State Output

Syntax: `show ip ospf external-link-state`

The OSPF external link state display shows the following information:

Table 5-8. CLI Display of OSPF External Link State Information

<table>
<thead>
<tr>
<th>This Field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link State ID</td>
<td>LSA ID for this LSA. Normally, the destination of the external route, but may have some “host” bits set.</td>
</tr>
<tr>
<td>Router ID</td>
<td>Router ID of the router that originated this external LSA.</td>
</tr>
<tr>
<td>Age</td>
<td>Current age (in seconds) of this LSA.</td>
</tr>
<tr>
<td>Sequence #</td>
<td>Sequence number of the current instance of this LSA.</td>
</tr>
<tr>
<td>Chksum(Hex)</td>
<td>LSA checksum value.</td>
</tr>
</tbody>
</table>

Syntax: `show ip ospf external-link-state [status | advertise] [link-state-id < link-state-id > | router-id < router-id > | sequence-number < sequence#>]`

The `status` keyword is optional and can be omitted. The output can be filtered to show a subset of the total output by specifying the `link-state-id`, `router-id`, or `sequence-number` options.
The `advertise` keyword displays the hexadecimal data in the specified LSA packet, the actual contents of the LSAs. This can also be filtered as above by including the `link-state-id`, `router-id`, or `sequence-number` options.

```
ProCurve# show ip ospf external-link-state advertise
OSPF External LSAs
Advertisements
-----------------------------------------------------------
000302050a0307000a00082580000005d99f0024ffffff008000000a0000000000000000
000302050a0308000a00082580000005cea90024ffffff008000000a0000000000000000
000302050a0309000a00082580000005c3b30024ffffff008000000a0000000000000000
000302050a030a000a00082580000005b8bd0024ffffff008000000a0000000000000000
000002050a0321000a000824800009cdb9dd0024ffffff00800000010000000000000000
```

Figure 5-15. Example of the Output for Show IP OSPF External-Link-State Advertise

Displaying OSPF Interface Information

To display OSPF interface information, enter `show ip ospf interface` at any CLI level:

```
ProCurve# show ip ospf interface
OSPF Interface Status
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Area ID</th>
<th>State</th>
<th>Auth-type</th>
<th>Cost</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.18.36</td>
<td>enabled</td>
<td>10.3.16.0</td>
<td>BDR</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.3.53.36</td>
<td>enabled</td>
<td>10.3.48.0</td>
<td>BDR</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Figure 5-16. Example of the Output for Show IP OSPF Interface
Syntax: show ip ospf interface [vlan < vlan-id > | < ip-addr >]

The OSPF interface display shows the following information:

Table 5-9. CLI Display of OSPF Interface Information

<table>
<thead>
<tr>
<th>This Field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The local IP address for this interface.</td>
</tr>
<tr>
<td>Status</td>
<td>enabled or disabled - whether OSPF is currently enabled on this interface.</td>
</tr>
<tr>
<td>Area ID</td>
<td>The ID of the area that this interface is in.</td>
</tr>
<tr>
<td>State</td>
<td>The current state of the interface. The value will be one of the following:</td>
</tr>
<tr>
<td></td>
<td>- DOWN - the underlying VLAN is down</td>
</tr>
<tr>
<td></td>
<td>- WAIT - the underlying VLAN is up, but we are waiting to hear hellos from other routers on this interface before we run designated router election</td>
</tr>
<tr>
<td></td>
<td>- DR - this switch is the designated router for this interface</td>
</tr>
<tr>
<td></td>
<td>- BDR - this switch is the backup designated router for this interface</td>
</tr>
<tr>
<td></td>
<td>- DROTHER - this router is not the designated router or backup designated router for this interface</td>
</tr>
<tr>
<td>Auth-type</td>
<td>none or simple - will be none if no authentication key is configured, simple if an authentication key is configured. All routers running OSPF on the same link must be using the same authentication type and key.</td>
</tr>
<tr>
<td>Cost</td>
<td>The OSPF's metric for this interface.</td>
</tr>
<tr>
<td>Priority</td>
<td>This routing switch's priority on this interface for use in the designated router election algorithm.</td>
</tr>
</tbody>
</table>

The <ip-addr> parameter displays the OSPF interface information for the specified IP address.
Displaying OSPF Interface Information for a Specific VLAN or IP Address

To display OSPF interface information for a specific VLAN or IP address, enter `show ip ospf interface <ip-addr>` at any CLI level. For example:

```
ProCurve# show ip ospf interface 10.3.18.36

OSPF Interface Status for 10.3.18.36

<table>
<thead>
<tr>
<th>IP Address</th>
<th>10.3.18.36</th>
<th>Status</th>
<th>enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area ID</td>
<td>10.3.16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>BDR</td>
<td>Auth-type</td>
<td>none</td>
</tr>
<tr>
<td>Cost</td>
<td>1</td>
<td>Priority</td>
<td>1</td>
</tr>
<tr>
<td>Type</td>
<td>BCAST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit Delay</td>
<td>1</td>
<td>Retrans Interval</td>
<td>5</td>
</tr>
<tr>
<td>Hello Interval</td>
<td>10</td>
<td>Rtr Dead Interval</td>
<td>40</td>
</tr>
<tr>
<td>Designated Router</td>
<td>10.3.18.34</td>
<td>Events</td>
<td>3</td>
</tr>
<tr>
<td>Backup Desig. Rtr</td>
<td>10.3.18.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 5-17. Example of Show IP OSPF Interface <ip-addr> Output

Syntax: `show ip ospf interface [vlan <vlan-id> | <ip-addr>]`

The OSPF interface display for a specific VLAN or IP address has the same information as the non-specific show ip ospf interface command for the **IP Address**, **Area ID**, **Status**, **State**, **Auth-type**, **Cost**, and **Priority** fields. See the information for the general command above for definitions of these fields.

The show ip ospf interface command for a specific VLAN or IP address shows the following additional information:

Table 5-10. CLI Display of OSPF Interface Information – VLAN or IP Address

<table>
<thead>
<tr>
<th>This Field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Will always be BCAST for interfaces on this routing switch. Point-to-point or NBMA (frame relay or ATM) type interfaces are not supported on the switches covered in this guide.</td>
</tr>
<tr>
<td>Transit Delay</td>
<td>Configured transit delay for this interface.</td>
</tr>
<tr>
<td>Retrans Interval</td>
<td>Configured retransmit interval for this interface.</td>
</tr>
</tbody>
</table>
Configuring OSPF

<table>
<thead>
<tr>
<th>This Field...</th>
<th>Displays...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello Interval</td>
<td>Configured hello interval for this interface.</td>
</tr>
<tr>
<td>Rtr Dead Interval</td>
<td>Configured router dead interval for this interface.</td>
</tr>
<tr>
<td>Designated Router</td>
<td>IP address of the router that has been elected designated router on this interface.</td>
</tr>
<tr>
<td>Backup Desig. Rtr</td>
<td>IP address of the router that has been elected backup designated router on this interface.</td>
</tr>
<tr>
<td>Events</td>
<td>Number of times the interface state has changed.</td>
</tr>
</tbody>
</table>

If you issue a `show ip ospf interface vlan <vlan-id>` command, the information will be the same as shown in the previous table, but for the IP address on the indicated VLAN.

Displaying OSPF Link State Information

To display OSPF link state information, enter `show ip ospf link-state` at any CLI level. When you enter this command, the switch displays an output similar to the following:

OSPF Link State Database for Area 0.0.0.0

<table>
<thead>
<tr>
<th>LSA Type</th>
<th>Link State ID</th>
<th>Advertising Router ID</th>
<th>Age</th>
<th>Sequence #</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>10.0.8.32</td>
<td>10.0.8.32</td>
<td>103</td>
<td>0x0000293e</td>
<td>0x0000b9f</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.8.33</td>
<td>10.0.8.33</td>
<td>123</td>
<td>0x0000293f</td>
<td>0x0000c5d</td>
</tr>
</tbody>
</table>

OSPF Link State Database for Area 10.3.16.0

<table>
<thead>
<tr>
<th>LSA Type</th>
<th>Link State ID</th>
<th>Advertising Router ID</th>
<th>Age</th>
<th>Sequence #</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>10.3.16.0</td>
<td>10.0.8.33</td>
<td>103</td>
<td>0x0000293e</td>
<td>0x0000b9f</td>
</tr>
<tr>
<td>Summary</td>
<td>10.3.17.0</td>
<td>10.0.8.33</td>
<td>123</td>
<td>0x0000293f</td>
<td>0x0000c5d</td>
</tr>
</tbody>
</table>

Figure 5-18. Example of Show IP OSPF Link-State Output
Syntax: show ip ospf link-state

The OSPF link state display shows contents of the LSA database, one table for each area. The following information is shown:

Table 5-11. CLI Display of OSPF Link State Information

| This Field... | Displays...
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA Type</td>
<td>Type of LSA. The possible types are: Router, Network, Summary, AsbSummary</td>
</tr>
<tr>
<td>Link State ID</td>
<td>LSA ID for this LSA. The meaning depends on the LSA type.</td>
</tr>
<tr>
<td>Advertised Router ID</td>
<td>Router ID of the router that originated this LSA.</td>
</tr>
<tr>
<td>Age</td>
<td>Current age (in seconds) of this LSA.</td>
</tr>
<tr>
<td>Sequence #</td>
<td>Sequence number of the current instance of this LSA.</td>
</tr>
<tr>
<td>Chksum(Hex)</td>
<td>LSA checksum value.</td>
</tr>
</tbody>
</table>

Other options for this command: The **status** keyword is optional and can be omitted. The output can be filtered to show a subset of the total output by specifying the **area-id**, **link-state-id**, **router-id**, **LSA type**, or **sequence-number** options.

The **advertise** keyword displays the hexadecimal data in the specified LSA packet, the actual contents of the LSAs. This can also be filtered as above by including the **area-id**, **link-state-id**, **router-id**, **LSA type**, or **sequence-number** options.

The full syntax of the command is:

Syntax: show ip ospf link-state [status | advertise] [< area-id > | link-state-id < link-state-id > | router-id < router-id > | type < router | network | summary | as-summary > | sequence-number < sequence# >]
An example of the `show ip ospf link-state advertise` is:

```
OSPF Link State Database for Area 0.0.0.0
Advertisements
------------------------------------------------------------------------
000202010a000820800000281a7b60054000000050a030e00ffffff0003000001...
000202010a0008210a00082180000006a5c90024010000010a0008230a03112104000002
000102010a0008230a00082380000015755d006c010000070a030600ffffff0003000001...
000202020a0302250a00082580000070244024ffffff000a008250a008230a00820
000202030a0310000a00082180000008c043001cffffff00000000002
000102030a0310000a00082380000009a859001cffffff00000000001
000002030a0310000a00082480000009ac53001cffffff00000000002
000202040a008240a00821800000032abb001c0000000000000000b
000102040a008240a0082380000004c12a001c000000000000002
```

OSPF Link State Database for Area 10.3.16.0
Advertisements
--
000202010a0008210a00082180000027fd33d0054050000050a031900ffffff0003000001...
000102010a0008220a000822800000284dc50006000000060a031500ffffff000300001...
000102020a0311220a00082280000027bf9080020ffffff000a008220a000821

Figure 5-19. Example of the Output for Show IP OSPF Link-State Advertise

Displaying OSPF Neighbor Information

To display OSPF neighbor information, enter `show ip ospf neighbor` at any CLI level:

```
OSPF Neighbor Information
.Router ID  Pri IP Address NbIfState State Rxmt QLen Events
------------- ---- --------------- --------- -------- ------- -------
10.0.8.34    1  10.3.18.34  DR    FULL     0       6
10.3.53.38   1  10.3.53.38  DR    FULL     0       6
```

Figure 5-20. Example of Show IP OSPF Neighbor Output

Syntax: `show ip ospf neighbor [ip-addr]`

The `[ip-addr]` can be specified to retrieve detailed information for the specific neighbor only. This is the IP address of the neighbor, not the Router ID.
This display shows the following information.

Table 5-12. CLI Display of OSPF Neighbor Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The router ID of the neighbor.</td>
</tr>
<tr>
<td>Pri</td>
<td>The OSPF priority of the neighbor. The priority is used during election of the Designated Router (DR) and Backup designated Router (BDR).</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of this routing switch’s interface with the neighbor.</td>
</tr>
<tr>
<td>NbIfState</td>
<td>The neighbor interface state. The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• DR – this neighbor is the elected designated router for the interface.</td>
</tr>
<tr>
<td></td>
<td>• BDR – this neighbor is the elected backup designated router for the interface.</td>
</tr>
<tr>
<td></td>
<td>• blank – this neighbor is neither the DR or the BDR for the interface.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the conversation (the adjacency) between your routing switch and the neighbor. The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• INIT – A Hello packet has recently been seen from the neighbor. However, bidirectional communication has not yet been established with the neighbor. (The switch itself did not appear in the neighbor’s Hello packet.) All neighbors in this state (or higher) are listed in the Hello packets sent from the associated interface.</td>
</tr>
<tr>
<td></td>
<td>• 2WAY – Communication between the two routers is bidirectional. This is the most advanced state before beginning adjacency establishment. The Designated Router and Backup Designated Router are selected from the set of neighbors in the 2Way state or greater.</td>
</tr>
<tr>
<td></td>
<td>• EXSTART – The first step in creating an adjacency between the two neighboring routers. The goal of this step is to decide which router is the master, and to decide upon the initial Database Description (DD) sequence number. Neighbor conversations in this state or greater are called adjacencies.</td>
</tr>
<tr>
<td></td>
<td>• EXCHANGE – The switch is describing its entire link state database by sending Database Description packets to the neighbor. Each Database Description packet has a DD sequence number, and is explicitly acknowledged. Only one Database Description packet can be outstanding at any time. In this state, Link State Request packets can also be sent asking for the neighbor’s more recent advertisements. All adjacencies in Exchange state or greater are used by the flooding procedure. In fact, these adjacencies are fully capable of transmitting and receiving all types of OSPF routing protocol packets.</td>
</tr>
<tr>
<td></td>
<td>• LOADING – Link State Request packets are sent to the neighbor asking for the more recent advertisements that have been discovered (but not yet received) in the Exchange state.</td>
</tr>
<tr>
<td></td>
<td>• FULL – The neighboring routers are fully adjacent. These adjacencies will now appear in router links and network link advertisements.</td>
</tr>
<tr>
<td>Rxmt QLen</td>
<td>Remote transmit queue length – the number of LSAs that the routing switch has sent to this neighbor and for which the routing switch is awaiting acknowledgements.</td>
</tr>
<tr>
<td>Events</td>
<td>The number of times the neighbor’s state has changed.</td>
</tr>
</tbody>
</table>
Displaying OSFPF Redistribution Information

As described under “Enabling Route Redistribution” on page 5-51, you can configure the routing switch to redistribute connected and static routes into OSPF. When you redistribute a route into OSPF, the routing switch can use OSPF to advertise the route to its OSPF neighbors.

To display the status of the OSPF redistribution, enter `show ip ospf redistribute` at any CLI context level:

```
ProCurve# show ip ospf redistribute
OSPF redistributing
  Route type Status
  ---------- --------
  connected enabled
  static    enabled
```

Figure 5-21. Example of Output for Show IP OSPF Redistribute

The display shows whether redistribution of each of the route types, connected and static is enabled.

Displaying OSFPF Redistribution Filter (restrict) Information

As described under “Defining Redistribution Filters” on page 5-49, you can configure the redistribution filters on the routing switch to restrict route redistribution by OSPF.

To display the status of the OSPF redistribution filters, enter `show ip ospf restrict` at any CLI context level:

```
ProCurve# show ip ospf restrict
OSPF restrict list
  IP Address       Mask
    10.0.8.0        255.255.248.0
    15.0.0.0        255.0.0.0
```

Figure 5-22. Example of Output for Show IP OSPF Restrict
This display shows the configured restrict entries.

Displaying OSPF Virtual Neighbor Information

To display OSPF virtual neighbor information, enter `show ip ospf virtual-neighbor` at any CLI level.

<table>
<thead>
<tr>
<th>Router ID</th>
<th>Area ID</th>
<th>State</th>
<th>IP Address</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.8.33</td>
<td>10.3.16.0</td>
<td>FULL</td>
<td>10.3.17.33</td>
<td>5</td>
</tr>
<tr>
<td>10.0.8.36</td>
<td>10.3.16.0</td>
<td>FULL</td>
<td>10.3.18.36</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 5-23. Example of Output for Show IP OSPF Virtual-Neighbor

Syntax: `show ip ospf virtual-neighbor [area < area-id> | <ip-address>]`

This display shows the following information.

Table 5-13. CLI Display of OSPF Virtual Neighbor Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>The router ID of this virtual neighbor (configured).</td>
</tr>
<tr>
<td>Area ID</td>
<td>The area ID of the transit area for the virtual link to this neighbor (configured).</td>
</tr>
<tr>
<td>State</td>
<td>The state of the adjacency with this virtual neighbor. The possible values are the same as the OSPF neighbor states. See the State parameter definition in table 5-12 on page 5-64. Note that virtual neighbors should never stay in the 2WAY state.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the virtual neighbor that the routing switch is using to communicate to that virtual neighbor.</td>
</tr>
<tr>
<td>Events</td>
<td>The number of times the virtual neighbor’s state has changed.</td>
</tr>
</tbody>
</table>

Notice from the syntax statement that you can get OSPF virtual neighbor information for a specific area or a specific IP address.
Displaying OSPF Virtual Link Information

To display OSPF virtual link information, enter `show ip ospf virtual-link` at any CLI level.

```console
ProCurve# show ip ospf virtual-link
OSPF Virtual Interface Status

<table>
<thead>
<tr>
<th>Transit AreaID</th>
<th>Neighbor Router</th>
<th>Authentication</th>
<th>Interface State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.16.0</td>
<td>10.0.8.33</td>
<td>none</td>
<td>P2P</td>
</tr>
<tr>
<td>10.3.16.0</td>
<td>10.0.8.36</td>
<td>none</td>
<td>P2P</td>
</tr>
</tbody>
</table>
```

Figure 5-24. Example of Output for Show IP OSPF Virtual-Link

`Syntax:` `show ip ospf virtual-link [area < area-id> | <ip-address>]`

This display shows the following information.

Table 5-14. CLI Display of OSPF Virtual Link Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Area ID</td>
<td>Area ID of transit area for the virtual link.</td>
</tr>
<tr>
<td>Neighbor Router</td>
<td>Router ID of the virtual neighbor.</td>
</tr>
<tr>
<td>Authentication</td>
<td>none or simple (same as for normal interface).</td>
</tr>
<tr>
<td>Interface State</td>
<td>The state of the virtual link to the virtual neighbor. The possible values are:</td>
</tr>
<tr>
<td></td>
<td>• DOWN – the routing switch has not yet found a route to the virtual neighbor.</td>
</tr>
<tr>
<td></td>
<td>• P2P – (point-to-point) the routing switch has found a route to the virtual neighbor. Virtual links are “virtual” serial links, hence the point-to-point terminology.</td>
</tr>
</tbody>
</table>

Notice from the syntax statement that you can get OSPF virtual link information for a specific area or a specific IP address.
Example: To get OSPF virtual link information for IP address 10.0.8.33, enter `show ip ospf virtual-link 10.0.8.33`. A display similar to the following is shown.

```
ProCurve# show ip ospf virtual-link 10.0.8.33

OSPF Virtual Interface Status for interface 10.0.8.33

  Transit AreaID : 10.3.16.0
  Neighbor Router : 10.0.8.33

  Authentication : none
  Interface State : P2P
  Events : 1

  Transit Delay : 1
  Rtr Interval : 5
  Hello Interval : 10
  Dead Interval : 40
```

Figure 5-25. Example of Output for Show IP OSPF Virtual-Link < ip-addr >

In this display, these fields show the same type of information as described for the general OSPF virtual link display: Transit Area ID, Neighbor Router, Authentication, and Interface State. This display shows the following additional information:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>The number of times the virtual link interface state has changed.</td>
</tr>
<tr>
<td>Transit delay</td>
<td>The configured transit delay for the virtual link.</td>
</tr>
<tr>
<td>Rtr Interval</td>
<td>The configured retransmit interval for the virtual link.</td>
</tr>
<tr>
<td>Hello Interval</td>
<td>The configured hello interval for the virtual link.</td>
</tr>
<tr>
<td>Dead Interval</td>
<td>The configured router dead interval for the virtual link</td>
</tr>
</tbody>
</table>

Table 5-15. CLI Display of OSPF Virtual Link Information – Specific IP Address
Displaying OSPF Route Information

To display OSPF route and other OSPF configuration information, enter `show ip ospf` at any CLI level:

ProCurve# show ip ospf

OSPF Configuration Information

OSPF protocol : enabled
Router ID : 10.0.8.35

Currently defined areas:

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Type</th>
<th>Default Cost</th>
<th>Summary LSA</th>
<th>Metric Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.16.0</td>
<td>normal 1</td>
<td>don't send</td>
<td>ospf metric</td>
<td></td>
</tr>
<tr>
<td>10.3.32.0</td>
<td>normal 1</td>
<td>don't send</td>
<td>ospf metric</td>
<td></td>
</tr>
</tbody>
</table>

Currently defined address ranges:

<table>
<thead>
<tr>
<th>Area ID</th>
<th>LSA Type</th>
<th>IP Network</th>
<th>Network Mask</th>
<th>Advertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.16.0</td>
<td>Summary</td>
<td>10.3.16.0</td>
<td>255.255.255.0</td>
<td>yes</td>
</tr>
</tbody>
</table>

OSPF interface configuration:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Area ID</th>
<th>Admin Status</th>
<th>Type</th>
<th>Authen Type</th>
<th>Cost</th>
<th>Pri</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.2.35</td>
<td>backbone</td>
<td>enabled</td>
<td>BCAST</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.3.3.35</td>
<td>backbone</td>
<td>enabled</td>
<td>BCAST</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.3.16.35</td>
<td>10.3.16.0</td>
<td>enabled</td>
<td>BCAST</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10.3.32.35</td>
<td>10.3.32.0</td>
<td>enabled</td>
<td>BCAST</td>
<td>none</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OSPF configured interface timers:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Transit Delay</th>
<th>Retransmit Interval</th>
<th>Hello Interval</th>
<th>Dead Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.2.35</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>10.3.3.35</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>10.3.16.35</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>10.3.32.35</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

OSPF configured virtual interfaces:

<table>
<thead>
<tr>
<th>Area ID</th>
<th>Router ID</th>
<th>Authen Type</th>
<th>Xmit Delay</th>
<th>Rxmt Interval</th>
<th>Hello Interval</th>
<th>Dead Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.16.0</td>
<td>10.0.8.33</td>
<td>none</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>10.3.16.0</td>
<td>10.0.8.36</td>
<td>none</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure 5-26. Example of Output for Show IP OSPF
Syntax: show ip ospf

This screen has a lot of information, most of it already covered in other show commands. The following table shows definitions for the fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF protocol</td>
<td>enabled or disabled – indicates if OSPF is currently enabled.</td>
</tr>
<tr>
<td>Router ID</td>
<td>The Router ID that this routing switch is currently using to identify itself.</td>
</tr>
<tr>
<td>Currently Defined Areas:</td>
<td></td>
</tr>
<tr>
<td>Area ID</td>
<td>The identifier for this area.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of OSPF area (normal or stub).</td>
</tr>
<tr>
<td>Stub Default Cost</td>
<td>The metric for any default route we will inject into a stub area if we are an ABR for the area. This value only applies to stub areas.</td>
</tr>
<tr>
<td>Stub Summary LSA</td>
<td>send or don't send – indicates the state of the no-summary option for the stub area. The value indicates if the area is “totally stubby” (no summaries sent from other areas) or just “stub” (summaries sent). Only applies to stub areas, and only takes effect if the routing switch is the ABR for the area.</td>
</tr>
<tr>
<td>Stub Metric Type</td>
<td>This value is always ospf metric.</td>
</tr>
<tr>
<td>Currently defined address ranges:</td>
<td></td>
</tr>
<tr>
<td>Area ID</td>
<td>The area where the address range is configured.</td>
</tr>
<tr>
<td>LSA Type</td>
<td>This value is always Summary.</td>
</tr>
<tr>
<td>IP Network</td>
<td>The address part of the address range specification.</td>
</tr>
<tr>
<td>Network Mask</td>
<td>The mask part of the address range specification.</td>
</tr>
<tr>
<td>Advertise</td>
<td>Whether we are advertising (yes) or suppressing (no) this address range.</td>
</tr>
</tbody>
</table>

Note

The remaining interface and virtual link information is the same as for the previously described OSPF show commands.
OSPF Equal-Cost Multipath (ECMP) for Different Subnets Available Through the Same Next-Hop Routes

The switches covered by this guide support optional load-sharing across redundant links where the network offers two, three, or four equal-cost next-hop routes for traffic to different subnets. (All traffic for different hosts in the same subnet goes through the same next-hop router.)

For example, in the OSPF network shown below, IP load-sharing is enabled on router “A”. In this case, OSPF calculates three equal-cost next-hop routes for each of the subnets and then distributes per-subnet route assignments across these three routes.

![Diagram of OSPF network with load-sharing](attachment:5-27.png)

Figure 5-27. Example of Load-Sharing Traffic to Different Subnets Through Equal-Cost Next-Hop Routers

<table>
<thead>
<tr>
<th>Destination Subnet</th>
<th>Router “A” Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.0.0/16</td>
<td>Router “C”</td>
</tr>
<tr>
<td>10.2.0.0/16</td>
<td>Router “D”</td>
</tr>
<tr>
<td>10.3.0.0/16</td>
<td>Router “B”</td>
</tr>
<tr>
<td>10.32.0.0/16</td>
<td>Router “B”</td>
</tr>
<tr>
<td>10.42.0.0/16</td>
<td>Router “D”</td>
</tr>
</tbody>
</table>

Figure 5-28. Example of a Routing Table for the Network in Figure 5-27
Note that IP load-sharing does not affect routed traffic to different hosts on the same subnet. That is, all traffic for different hosts on the same subnet will go through the same next-hop router. For example, if subnet 10.32.0.0 includes two servers at 10.32.0.11 and 10.32.0.22, then all traffic from router “A” to these servers will go through router “B”.

Syntax: `[no] ip load-sharing < 2 - 4 >

When OSPF is enabled and multiple, equal-cost, next-hop routes are available for traffic destinations on different subnets, this feature, by default, enables load-sharing among up to four next-hop routes. The no form of the command disables this load-sharing so that only one route in a group of multiple, equal-cost, next-hop routes is used for traffic that could otherwise be load-shared across multiple routes. For example, in figure 5-27 on page <zBlue>71, the next-hop routers “B”, “C”, and “D” are available for equal-cost load-sharing of eligible traffic.

Disabling IP load-sharing means that router “A” selects only one next-hop router for traffic that is actually eligible for load-sharing through different next-hop routers. (Default: Enabled with four equal-cost, next-hop routes allowed)

Note: In the default configuration, IP load-sharing is enabled by default. However, it has no effect unless IP routing and OSPF are enabled.

< 1 - 4 >

Specifies the maximum number of equal-cost next hop paths the router allows. (Range: 2 - 4; Default: 4)

Displaying the Current IP Load-Sharing Configuration

Use the `show running` command to view the currently active IP load-sharing configuration, and `show config` to view the IP load-sharing configuration in the startup-config file. (While in its default configuration, IP load-sharing does not appear in the command output.) If IP load sharing is configured with non-default settings (disabled or configured for either two or three equal-cost next-hop paths), then the current settings are displayed in the command output.
```
ProCurve(config)# show running
Running configuration:
; J8697A Configuration Editor; Created on release #K.11.00
hostname "ProCurve"
module 1 type J8702A
snmp-server community "public" Unrestricted
vlan 1
    name "DEFAULT_VLAN"
    untagged A1-A24
    ip address dhcp-bootp
    exit
ip load-sharing 3
access-controller vlan-base 2000
```

Indicates a non-default IP load-sharing configuration allowing three equal-cost next-hop paths for routed traffic with different subnet destinations. If the router is configured with the default IP load-sharing configuration, IP load-sharing does not appear in the `show config` or `show running` command output.

Figure 5-29. Displaying a Non-Default IP Load-Sharing Configuration
Configuring IRDP

The ICMP Router Discovery Protocol (IRDP) is used by ProCurve routing switches to advertise the IP addresses of its router interfaces to directly attached hosts. IRDP is enabled by default. You can enable the feature on a global basis or on an individual VLAN interface basis.

When IRDP is enabled, the routing switch periodically sends Router Advertisement messages out the IP interfaces on which the feature is enabled. The messages advertise the routing switch's IP addresses to directly attached hosts who listen for the messages. In addition, hosts can be configured to query the routing switch for the information by sending Router Solicitation messages.

Some types of hosts use the Router Solicitation messages to discover their default gateway. When IRDP is enabled on the ProCurve routing switch, the routing switch responds to the Router Solicitation messages. Some clients interpret this response to mean that the routing switch is the default gateway. If another router is actually the default gateway for these clients, leave IRDP disabled on the ProCurve routing switch.

IRDP uses the following parameters. If you enable IRDP on individual VLAN interfaces, you can configure these parameters on an individual VLAN interface basis.

- **Packet type** - The routing switch can send Router Advertisement messages as IP broadcasts or as IP multicasts addressed to IP multicast group 224.0.0.1. The default packet type is IP broadcast.

- **Hold time** - Each Router Advertisement message contains a hold time value. This value specifies the maximum amount of time the host should consider an advertisement to be valid until a newer advertisement arrives. When a new advertisement arrives, the hold time is reset. The hold time is always longer than the maximum advertisement interval. Therefore, if the hold time for an advertisement expires, the host can reasonably conclude that the router interface that sent the advertisement is no longer available. The default hold time is three times the maximum message interval.

- **Maximum message interval and minimum message interval** - when IRDP is enabled, the routing switch sends the Router Advertisement messages every 450-600 seconds by default. The time within this interval that the routing switch selects is random for each message and is not affected by traffic loads or other network factors. The random interval minimizes the probability that a host will receive Router Advertisement
messages from other routers at the same time. The interval on each IRDP-enabled routing switch interface is independent of the interval on other IRDP-enabled interfaces. The default maximum message interval is 600 seconds. The default minimum message interval is 450 seconds.

- **Preference** - If a host receives multiple Router Advertisement messages from different routers, the host selects the router that send the message with the highest preference as the default gateway. The preference can be a number from -4294967296 to 4294967295. The default is 0.

Enabling IRDP Globally

To enable IRDP globally, enter the following command:

```
ProCurve(config)# ip irdp
```

This command enables IRDP on the IP interfaces on all ports. Each port uses the default values for the IRDP parameters.

Enabling IRDP on an Individual VLAN Interface

To enable IRDP on an individual VLAN interface and configure IRDP parameters, enter commands such as the following:

```
ProCurve(config)# vlan 1
ProCurve(vlan-1)# ip irdp maxadvertinterval 400
```

This example shows how to enable IRDP on a specific interface (VLAN 1) and change the maximum advertisement interval for Router Advertisement messages to 400 seconds.

Syntax:

```
[no] ip irdp [broadcast | multicast] [holdtime <seconds>] [maxadvertinterval <seconds>] [minadvertinterval <seconds>] [preference <number>]
```

- **broadcast | multicast** - This parameter specifies the packet type the routing switch uses to send the Router Advertisement.
 - **broadcast** - The routing switch sends Router Advertisements as IP broadcasts.
 - **multicast** - The routing switch sends Router Advertisements as multicast packets addressed to IP multicast group 224.0.0.1. This is the default.

- **holdtime <seconds>** - This parameter specifies how long a host that receives a Router Advertisement from the routing switch should consider the advertisement to be valid. When a host receives a new Router Advertisement message from the routing switch, the host resets the hold time.
for the routing switch to the hold time specified in the new advertisement. If the hold time of an advertisement expires, the host discards the advertisement, concluding that the router interface that sent the advertisement is no longer available. The value must be greater than the value of the maxadvertinterval parameter and cannot be greater than 9000. The default is three times the value of the maxadvertinterval parameter.

- **maxadvertinterval** - This parameter specifies the maximum amount of time the routing switch waits between sending Router Advertisements. You can specify a value from 1 to the current value of the holdtime parameter. The default is 600 seconds.

- **minadvertinterval** - This parameter specifies the minimum amount of time the routing switch can wait between sending Router Advertisements. The default is three-fourths (0.75) the value of the maxadvertinterval parameter. If you change the maxadvertinterval parameter, the software automatically adjusts the minadvertinterval parameter to be three-fourths the new value of the maxadvertinterval parameter. If you want to override the automatically configured value, you can specify an interval from 1 to the current value of the maxadvertinterval parameter.

- **preference < number>** - This parameter specifies the IRDP preference level of this routing switch. If a host receives Router Advertisements from multiple routers, the host selects the router interface that sent the message with the highest preference as the host's default gateway. The valid range is -4294967296 to 4294967295. The default is 0.

Displaying IRDP Information

To display IRDP information, enter `show ip irdp` from any CLI level.

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Advertising Address</th>
<th>Min int</th>
<th>Max int</th>
<th>Holdtime</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT_VLAN</td>
<td>Enabled</td>
<td>multicast</td>
<td>450</td>
<td>600</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>VLAN20</td>
<td>Enabled</td>
<td>multicast</td>
<td>450</td>
<td>600</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>VLAN30</td>
<td>Enabled</td>
<td>multicast</td>
<td>450</td>
<td>600</td>
<td>1800</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5-30. Example of Output for Show IP IRDP
Configuring DHCP Relay

Overview

The Dynamic Host Configuration Protocol (DHCP) is used for configuring hosts with IP address and other configuration parameters without human intervention. The protocol is composed of three components: the DHCP client, the DHCP server, and the DHCP relay agent. The DHCP client sends broadcast request packets to the network, the DHCP servers respond with broadcast packets that offer IP parameters, such as an IP address for the client. After the client chooses the IP parameters, communication between the client and server is by unicast packets.

The function of the DHCP relay agent is to forward the DHCP messages to other subnets so that the DHCP server doesn’t have to be on the same subnet as the DHCP clients. The DHCP relay agent transfers the DHCP messages from DHCP clients located on a subnet without DHCP server, to other subnets. It also relays answers from DHCP servers to DHCP clients.

DHCP Option 82

Introduction

Option 82 is called the Relay Agent Information option and is inserted by the DHCP relay agent when forwarding client-originated DHCP packets to a DHCP server. Servers recognizing the Relay Agent Information option may use the information to implement IP address or other parameter assignment policies. The DHCP Server echoes the option back verbatim to the relay agent in server-to-client replies, and the relay agent strips the option before forwarding the reply to the client.

The "Relay Agent Information" option is organized as a single DHCP option that contains one or more "sub-options" that convey information known by the relay agent. The initial sub-options are defined for a relay agent that is co-located in a public circuit access unit. These include a "circuit ID" for the incoming circuit, and a "remote ID" which provides a trusted identifier for the remote high-speed modem.

The routing switch can operate as a DHCP relay agent to enable communication between a client and a DHCP server on a different subnet. Without Option 82, DHCP operation modifies client IP address request packets to the extent needed to forward the packets to a DHCP server. Option 82 enhances this
operation by enabling the routing switch to append an *Option 82 field* to such client requests. This field includes two suboptions for identifying the routing switch (by MAC address or IP address) and the routing switch port the client is using to access the network. A DHCP server with Option 82 capability can read the appended field and use this data as criteria for selecting the IP addressing it will return to the client through the usual DHCP server response packet. This operation provides several advantages over DHCP without Option 82:

- An Option 82 DHCP server can use a relay agent’s identity and client source port information to administer IP addressing policies based on client and relay agent location within the network, regardless of whether the relay agent is the client’s primary relay agent or a secondary agent.

- A routing switch operating as a primary Option 82 relay agent for DHCP clients requesting an IP address can enhance network access protection by blocking attempts to use an invalid Option 82 field to imitate an authorized client, or by blocking attempts to use response packets with missing or invalid Option 82 suboptions to imitate valid response packets from an authorized DHCP server.

- An Option 82 relay agent can also eliminate unnecessary broadcast traffic by forwarding an Option 82 DHCP server response only to the port on which the requesting client is connected, instead of broadcasting the DHCP response to all ports on the VLAN.

Note

The routing switch’s DHCP Relay Information (Option 82) feature can be used in networks where the DHCP server(s) are compliant with RFC 3046 Option 82 operation. DHCP Servers that are not compliant with Option 82 operation ignore Option 82 fields. For information on configuring an Option 82 DHCP server, refer to the documentation provided with the server application.

Some client applications can append an Option 82 field to their DHCP requests. Refer to the documentation provided for your client application.

It is not necessary for all relay agents on the path between a DHCP client and the server to support Option 82, and a relay agent without Option 82 should forward DHCP packets regardless of whether they include Option 82 fields. However, Option 82 relay agents should be positioned at the DHCP policy boundaries in a network to provide maximum support and security for the IP addressing policies configured in the server.
Option 82 Server Support

To apply DHCP Option 82, the routing switch must operate in conjunction with a server that supports Option 82. (DHCP servers that do not support Option 82 typically ignore Option 82 fields.) Also, the routing switch applies Option 82 functionality only to client request packets being routed to a DHCP server. DHCP relay with Option 82 does not apply to switched (non-routed) client requests.

For information on configuring policies on a server running DHCP Option 82, refer to the documentation provided for that application.

Figure 5-31. Example of a DHCP Option 82 Application

Terminology

Circuit ID: In Option 82 applications, the number of the port through which the routing switch receives a DHCP client request. On ProCurve fixed-port switches, the Circuit ID of a given port corresponds to the port number appearing on the front of the switch for that port. On ProCurve chassis switches, the port number for a given port corresponds to the internal if Index number for that port. This value is included as a suboption in an Option 82 field that the relay agent appends to a Client DHCP request before forwarding the request toward a DHCP server. (For more on Circuit ID, refer to “Circuit ID” in the bulleted list on page 5-82.)

DHCP Policy Boundary: For Option 82 applications, an area of a network as defined by connection to a given routing switch or subnet and/or a specific port belonging to the routing switch or subnet.
DHCP relay agent: See Relay Agent.

Forwarding Policy: The Option 82 method the routing switch uses to process incoming client DHCP requests. For a given inbound DHCP client request, the forwarding policy determines whether the routing switch will add Option 82 information, replace existing Option 82 information, or leave any existing information unchanged. The policy also determines whether the routing switch will forward the client request toward a DHCP server or drop the request. For a DHCP server response to an Option 82 client request, the routing switch can optionally perform a validation check to determine whether to forward or drop the response. Each Option 82 relay agent in the path between a DHCP client and an Option 82 DHCP server can be configured with a unique forwarding policy, which enhances DHCP policy control over discrete areas of a network.

Primary Relay Agent: In the path between a DHCP client and a DHCP server, the first routing switch (configured to support DHCP operation) that a client DHCP request encounters in the path from the client to a DHCP server.

Relay Agent: A routing switch that is configured to support DHCP operation.

Remote ID: In Option 82 applications on ProCurve switches, either the MAC address of a relay agent, or the IP address of a VLAN or subnet configured on a relay agent. This value is included as a suboption in an Option 82 field that the relay agent appends to a Client DHCP request before forwarding the request toward a DHCP server. (For more on Remote ID, refer to “Remote ID” in the bulleted list on page 5-82.)

Secondary Relay Agent: In the path between a DHCP client and a DHCP server, any routing switch (configured to support DHCP operation) other than the primary relay agent.

General DHCP Option 82 Requirements and Operation

Requirements. DHCP Option 82 operation is configured at the global config level and requires the following:
- IP routing enabled on the switch
- DHCP-Relay Option 82 enabled (global command level)
- routing switch access to an Option 82 DHCP server on a different subnet than the clients requesting DHCP Option 82 support
- one IP Helper address configured on each VLAN supporting DHCP clients
General DHCP-Relay Operation with Option 82. Typically, the first (primary) Option 82 relay agent to receive a client’s DHCP request packet appends an Option 82 field to the packet and forwards it toward the DHCP server identified by the IP Helper address configured on the VLAN in which the client packet was received. Other, upstream relay agents used to forward the packet may append their own Option 82 fields, replace the Option 82 field(s) they find in the packet, forward the packet without adding another field, or drop the packet. (Intermediate next-hop routing switches without Option 82 capability can be used to forward—route—client request packets with Option 82 fields.) Response packets from an Option 82 server are routed back to the primary relay agent (routing switch), and include an IP addressing assignment for the requesting client and an exact copy of the Option 82 data the server received with the client request. The relay agent strips off the Option 82 data and forwards the response packet out the port indicated in the response as the Circuit ID (client access port). Under certain validation conditions described later in this section, a relay agent detecting invalid Option 82 data in a response packet may drop the packet.

Figure 5-32. Example of DHCP Option 82 Operation in a Network with a Non-Compliant Relay Agent

Option 82 Field Content

The Remote ID and Circuit ID subfields comprise the Option 82 field a relay agent appends to client requests. A DHCP server configured to apply a different IP addressing policy to different areas of a network uses the values in these subfields to determine which DHCP policy to apply to a given client request.
Remote ID: This configurable subfield identifies a policy area that comprises either the routing switch as a whole (by using the routing switch MAC address) or an individual VLAN configured on the routing switch (by using the IP address of the VLAN receiving the client request).

- Use the IP address option if the server will apply different IP addressing policies to DHCP client requests from ports in different VLANs on the same routing switch.
- Use the MAC address option if, on a given routing switch, it does not matter to the DHCP server which VLAN is the source of a client request (that is, use the MAC address option if the IP addressing policies supported by the target DHCP server do not distinguish between client requests from ports in different VLANs in the same routing switch).

To view the MAC address for a given routing switch, execute the `show system-information` command in the CLI.

```
ProCurve(config)# show system-information
Status and Counters - General System Information
System Name            : ProCurve
System Contact         : 
System Location        : 
MAC Age Time (sec)     : 300
Time Zone              : 0
Daylight Time Zone     : None

Firmware revision      : K.11.00  Base MAC Addr  : 00110a-c00c20
ROM Version            : K.11.00  Serial Number   : 9C4261B049
Up Time                 : 32 mins  Memory - Total : 33,043,456
CPU Util (%)            : 4        Memory - Free  : 25,395,136
IF Mgmt - Pkts Rx : 0   Packet - Total   : 1998
IF Mgmt - Pkts Tx : 0   Packet - Free    : 1740
IF Mgmt - Buffers Min  : 0
IF Mgmt - Buffers Max  : 0
```

Switch MAC Address

Figure 5-33. Using the CLI To View the Switch MAC Address

Circuit ID: This nonconfigurable subfield identifies the port number of the physical port through which the routing switch received a given DHCP client request, and is necessary to identify if you want to configure an Option 82 DHCP server to use the Circuit ID to select a DHCP policy to assign to clients connected to the port. This number is the identity of the inbound port. On ProCurve fixed-port switches, the port number used for the Circuit ID is always the same as the physical port number shown on the front of the switch. On ProCurve chassis switches, where a dedicated, sequential block of internal port numbers are reserved for each slot, regardless of whether a slot is occupied, the circuit ID for a given port is
the sequential index number for that port position in the slot. (To view the Index number assignments for ports in the routing switch, use the `walkmib ifname` command.)

For example, the circuit ID for a client connected to port 11 on a Series 3500yl switch is “11”. However, the Circuit ID for port B11 on a Series 5400zl switch is “35”. (See Figure 5-34, below.)

![ProCurve# walkmib ifname](image)

--- More ---, next page: Space, next line: Enter, quit: Control-C

Figure 5-34. Using Walkmib To Determine the Circuit ID for a Port on a ProCurve Chassis

For example, suppose you wanted port 10 on a given relay agent to support no more than five DHCP clients simultaneously, you could configure the server to allow only five IP addressing assignments at any one time for the circuit ID (port) and remote ID (MAC address) corresponding to port 10 on the selected relay agent.
Similarly, if you wanted to define specific ranges of addresses for clients on different ports in the same VLAN, you could configure the server with the range of IP addresses allowed for each circuit ID (port) associated with the remote ID (IP address) for the selected VLAN.

Forwarding Policies

DHCP Option 82 on ProCurve switches offers four forwarding policies, with an optional validation of server responses for three of the policy types (append, replace, or drop).

Table 5-17. Configuration Options for Managing DHCP Client Request Packets

<table>
<thead>
<tr>
<th>Option 82 Configuration</th>
<th>DHCP Client Request Packet Inbound to the Routing Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Packet Has No Option 82 Field</td>
</tr>
<tr>
<td></td>
<td>Packet Includes an Option 82 Field</td>
</tr>
<tr>
<td>Append</td>
<td>Append an Option 82 Field</td>
</tr>
<tr>
<td></td>
<td>Append allows the most detail in defining DHCP policy</td>
</tr>
<tr>
<td></td>
<td>boundaries. For example, where the path from a client</td>
</tr>
<tr>
<td></td>
<td>to the DHCP Option 82 server includes multiple relay</td>
</tr>
<tr>
<td></td>
<td>agents with Option 82 capability, each relay agent can</td>
</tr>
<tr>
<td></td>
<td>define a DHCP policy boundary and append its own</td>
</tr>
<tr>
<td></td>
<td>Option 82 field to the client request packet. The</td>
</tr>
<tr>
<td></td>
<td>server can then determine in detail the agent hops the</td>
</tr>
<tr>
<td></td>
<td>packet took, and can be configured with a policy</td>
</tr>
<tr>
<td></td>
<td>appropriate for any policy boundary on the path.</td>
</tr>
<tr>
<td></td>
<td>Note: In networks with multiple relay agents</td>
</tr>
<tr>
<td></td>
<td>between a client and an Option 82 server, append can</td>
</tr>
<tr>
<td></td>
<td>be used only if the server supports multiple Option 82</td>
</tr>
<tr>
<td></td>
<td>fields in a client request. If the server supports only</td>
</tr>
<tr>
<td></td>
<td>one Option 82 field in a request, consider using the</td>
</tr>
<tr>
<td></td>
<td>keep option.</td>
</tr>
<tr>
<td>Keep</td>
<td>Append an Option 82 Field</td>
</tr>
<tr>
<td></td>
<td>If the relay agent receives a client request that</td>
</tr>
<tr>
<td></td>
<td>already has one or more Option 82 fields, keep causes</td>
</tr>
<tr>
<td></td>
<td>the relay agent to retain such fields and forward the</td>
</tr>
<tr>
<td></td>
<td>request without adding another Option 82 field. But if</td>
</tr>
<tr>
<td></td>
<td>the incoming client request does not already have any</td>
</tr>
<tr>
<td></td>
<td>Option 82 fields, the relay agent appends an Option 82</td>
</tr>
<tr>
<td></td>
<td>field before forwarding the request. Some applications</td>
</tr>
<tr>
<td></td>
<td>for keep include:</td>
</tr>
<tr>
<td></td>
<td>• The DHCP server does not support multiple Option 82</td>
</tr>
<tr>
<td></td>
<td>packets in a client request and there are multiple</td>
</tr>
<tr>
<td></td>
<td>Option 82 relay agents in the path to the server.</td>
</tr>
<tr>
<td></td>
<td>• The unusual case where DHCP clients in the network</td>
</tr>
<tr>
<td></td>
<td>add their own Option 82 fields to their request packets</td>
</tr>
<tr>
<td></td>
<td>and you do not want any additional fields added by</td>
</tr>
<tr>
<td></td>
<td>relay agents.</td>
</tr>
<tr>
<td></td>
<td>This policy does not include the validate option (</td>
</tr>
<tr>
<td></td>
<td>described in the next section) and allows forwarding</td>
</tr>
<tr>
<td></td>
<td>of all server response packets arriving inbound on the</td>
</tr>
<tr>
<td></td>
<td>routing switch (except those without a primary relay</td>
</tr>
<tr>
<td></td>
<td>agent identifier.)</td>
</tr>
</tbody>
</table>
Option 82 Configuration

<table>
<thead>
<tr>
<th>Option 82 Configuration</th>
<th>DHCP Client Request Packet Inbound to the Routing Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Packet Has No Option 82 Field</td>
</tr>
<tr>
<td></td>
<td>Packet Includes an Option 82 Field</td>
</tr>
<tr>
<td>Replace</td>
<td>Replace replaces any existing Option 82 fields from downstream relay agents (and/or the originating client) with an Option 82 field for the current relay agent. Some applications for replace include:</td>
</tr>
<tr>
<td></td>
<td>- The relay agent is located at a point in the network that is a DHCP policy boundary and you want to replace any Option 82 fields appended by downstream devices with an Option 82 field from the relay agent at the boundary. (This eliminates downstream Option 82 fields you do not want the server to use when determining which IP addressing policy to apply to a client request.)</td>
</tr>
<tr>
<td></td>
<td>- In applications where the routing switch is the primary relay agent for clients that may append their own Option 82 field, you can use replace to delete these fields if you do not want them included in client requests reaching the server.</td>
</tr>
<tr>
<td>Drop</td>
<td>Drop causes the routing switch to drop an inbound client request with an Option 82 field already appended. If no Option 82 fields are present, drop causes the routing switch to add an Option 82 field and forward the request. As a general guideline, configure drop on relay agents at the edge of a network, where an inbound client request with an appended Option 82 field may be unauthorized, a security risk, or for some other reason, should not be allowed.</td>
</tr>
</tbody>
</table>

Multiple Option 82 Relay Agents in a Client Request Path

Where the client is one router hop away from the DHCP server, only the Option 82 field from the first (and only) relay agent is used to determine the policy boundary for the server response. Where there are multiple Option 82 router hops between the client and the server, you can use different configuration options on different relay agents to achieve the results you want. This includes configuring the relay agents so that the client request arrives at the server with either one Option 82 field or multiple fields. (Using multiple Option 82 fields assumes that the server supports multiple fields and is configured to assign IP addressing policies based on the content of multiple fields.)

![Diagram](5-35) **Figure 5-35. Example Configured To Allow Only the Primary Relay Agent To Contribute an Option 82 Field**

The above combination allows for detection and dropping of client requests with spurious Option 82 fields. If none are found, then the drop policy on the first relay agent adds an Option 82 field, which is then kept unchanged over
the next two relay agent hops ("B" and "C"). The server can then enforce an IP addressing policy based on the Option 82 field generated by the edge relay agent ("A"). In this example, the DHCP policy boundary is at relay agent 1.

![Figure 5-36. Example Configured To Allow Multiple Relay Agents To Contribute an Option 82 Field](image)

This is an enhancement of the previous example. In this case, each hop for an accepted client request adds a new Option 82 field to the request. A DHCP server capable of using multiple Option 82 fields can be configured to use this approach to keep a more detailed control over leased IP addresses. In this example, the primary DHCP policy boundary is at relay agent “A”, but more global policy boundaries can exist at relay agents “B” and “C”.

![Figure 5-37. Example Allowing Only an Upstream Relay Agent To Contribute an Option 82 Field](image)

Like the first example, above, this configuration drops client requests with spurious Option 82 fields from clients on the edge relay agent. However, in this case, only the Option 82 field from the last relay agent is retained for use by the DHCP server. In this case the DHCP policy boundary is at relay agent “C”. In the previous two examples the boundary was with relay “A”.

Validation of Server Response Packets

A valid Option 82 server response to a client request packet includes a copy of the Option 82 field(s) the server received with the request. With validation disabled, most variations of Option 82 information are allowed, and the corresponding server response packets are forwarded.
Server response validation is an option you can specify when configuring Option 82 DHCP for `append`, `replace`, or `drop` operation. (Refer to “Forwarding Policies” on page 5-84.) Enabling validation on the routing switch can enhance protection against DHCP server responses that are either from untrusted sources or are carrying invalid Option 82 information.

With validation enabled, the relay agent applies stricter rules to variations in the Option 82 field(s) of incoming server responses to determine whether to forward the response to a downstream device or to drop the response due to invalid (or missing) Option 82 information. Table 5-18, below, describes relay agent management of DHCP server responses with optional validation enabled and disabled.

Table 5-18. Relay Agent Management of DHCP Server Response Packets.

<table>
<thead>
<tr>
<th>Response Packet Content</th>
<th>Option 82 Configuration</th>
<th>Validation Enabled on the Relay Agent</th>
<th>Validation Disabled (The Default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid DHCP server response packet without an Option 82 field.</td>
<td><code>append, replace, or drop</code>¹</td>
<td>Drop the server response packet.</td>
<td>Forward server response packet to a downstream device.</td>
</tr>
<tr>
<td></td>
<td><code>keep</code>²</td>
<td>Forward server response packet to a downstream device.</td>
<td>Forward server response packet to a downstream device.</td>
</tr>
<tr>
<td>The server response packet carries data indicating a given routing switch is the primary relay agent for the original client request, but the associated Option 82 field in the response contains a <code>Remote ID</code> and <code>Circuit ID</code> combination that did not originate with the given relay agent.</td>
<td><code>append</code></td>
<td>Drop the server response packet.</td>
<td>Forward server response packet to a downstream device.</td>
</tr>
<tr>
<td></td>
<td><code>replace or drop</code>¹</td>
<td>Drop the server response packet.</td>
<td>Drop the server response packet.</td>
</tr>
<tr>
<td></td>
<td><code>keep</code>²</td>
<td>Forward server response packet to a downstream device.</td>
<td>Forward server response packet to a downstream device.</td>
</tr>
<tr>
<td>The server response packet carries data indicating a given routing switch is the primary relay agent for the original client request, but the associated Option 82 field in the response contains a <code>Remote ID</code> that did not originate with the relay agent.</td>
<td><code>append</code></td>
<td>Drop the server response packet.</td>
<td>Forward server response packet to a downstream device.</td>
</tr>
<tr>
<td></td>
<td><code>replace or drop</code>¹</td>
<td>Drop the server response packet.</td>
<td>Drop the server response packet.</td>
</tr>
<tr>
<td></td>
<td><code>keep</code>²</td>
<td>Forward server response packet to a downstream device.</td>
<td>Forward server response packet to a downstream device.</td>
</tr>
<tr>
<td>All other server response packets³</td>
<td><code>append, keep</code>², <code>replace, or drop</code>¹</td>
<td>Forward server response packet to a downstream device.</td>
<td>Forward server response packet to a downstream device.</td>
</tr>
</tbody>
</table>

¹Drop is the recommended choice because it protects against an unauthorized client inserting its own Option 82 field for an incoming request.

²A routing switch with DHCP Option 82 enabled with the `keep` option forwards all DHCP server response packets except those that are not valid for either Option 82 DHCP operation (compliant with RFC 3046) or DHCP operation without Option 82 support (compliant with RFC 2131).

³A routing switch with DHCP Option 82 enabled drops an inbound server response packet if the packet does not have any device identified as the primary relay agent (`giaddr` = null; refer to RFC 2131).
Multinetted VLANs

On a multinetted VLAN, each interface can form an Option 82 policy boundary within that VLAN if the routing switch is configured to use IP for the remote ID suboption. That is, if the routing switch is configured with IP as the remote ID option and a DHCP client request packet is received on a multinetted VLAN, the IP address used in the Option 82 field will identify the subnet on which the packet was received instead of the IP address for the VLAN. This enables an Option 82 DHCP server to support more narrowly defined DHCP policy boundaries instead of defining the boundaries at the VLAN or whole routing switch levels. If the MAC address option (the default) is configured instead, then the routing switch MAC address will be used regardless of which subnet was the source of the client request. (The MAC address is the same for all VLANs configured on the routing switch.)

Note that all request packets from DHCP clients in the different subnets in the VLAN must be able to reach any DHCP server identified by the IP Helper Address(es) configured on that VLAN.
Configuring Option 82 Operation on the Routing Switch

append: Configures the routing switch to append an Option 82 field to the client DHCP packet. If the client packet has any existing Option 82 field(s) assigned by another device, then the new field is appended to the existing field(s).

The appended Option 82 field includes the switch Circuit ID (inbound port number*) associated with the client DHCP packet, and the switch Remote ID. The default switch remote ID is the MAC address of the switch on which the packet was received from the client. To use the incoming VLAN’s IP address instead of the switch MAC address for the remote ID, use the ip option (below).

replace: Configures the routing switch to replace any existing Option 82 field(s) in an inbound client DHCP packet with one Option 82 field for the current routing switch.

The replacement Option 82 field includes the switch circuit ID (inbound port number*) associated with the client DHCP packet, and the switch remote ID. The default switch remote ID is the MAC address of the switch on which the packet was received from the client. To use the incoming VLAN’s IP address instead of the switch MAC address for the remote ID, use the ip option (below).

drop: Configures the routing switch to unconditionally drop any client DHCP packet received with existing Option 82 field(s). This means that such packets will not be forwarded. Use this option where access to the routing switch by untrusted clients is possible.

If the routing switch receives a client DHCP packet without an Option 82 field, it adds an Option 82 field to the client and forwards the packet. The added Option 82 field includes the switch circuit ID (inbound port number*) associated with the client DHCP packet, and the switch remote ID. The default switch remote ID is the MAC address of the switch on which the packet was received from the client. To use the incoming VLAN’s IP address instead of the switch MAC address for the remote ID, use the ip option (below).

keep: For any client DHCP packet received with existing Option 82 field(s), configures the routing switch to forward the packet as-is, without replacing or adding to the existing Option 82 field(s).

[validate]: This option operates when the routing switch is configured with append, replace, or drop as a forwarding policy. With validate enabled, the routing switch applies stricter rules to an incoming Option 82 server response to determine whether to forward or drop the response. For more information, refer to “Validation of Server Response Packets” on page 5-86.
This option specifies the remote ID suboption the routing switch will use in Option 82 fields added or appended to DHCP client packets. The choice of type depends on how you want to define DHCP policy areas in the client requests sent to the DHCP server. (Refer to “Option 82 Field Content” on page 5-81.)

ip: Specifies the IP address of the VLAN on which the client DHCP packet enters the switch.

mac: Specifies the routing switch’s MAC address. (The MAC address used is the same MAC address that is assigned to all VLANs configured on the routing switch.) This is the default setting.

Notes on Default Remote ID Selection: Executing the Option 82 command without specifying either ip or mac configures the remote ID as the MAC address of the switch on which the packet was received from the client. The command options for viewing the routing switch MAC address are listed at the end of the “Remote ID” description that begins on page 5-81.

Operating Notes

- This implementation of DHCP relay with Option 82 complies with the following RFCs:
 - RFC 2131
 - RFC 3046

- Moving a client to a different port allows the client to continue operating as long as the port is a member of the same VLAN as the port through which the client received its IP address. However, rebooting the client after it moves to a different port can alter the IP addressing policy the client receives if the DHCP server is configured to provide different policies to clients accessing the network through different ports.

- The IP address of the primary DHCP relay agent receiving a client request packet is automatically added to the packet, and is identified as the `giaddr` (gateway interface address). (That is, the giaddr is the IP address of the VLAN on which the request packet was received from the client.) For more information, refer to RFC 2131 and RFC 3046.

- DHCP request packets from multiple DHCP clients on the same relay agent port will be routed to the same DHCP server(s). Note that when using 802.1X on a switch, a port's VLAN membership may be changed by a RADIUS server responding to a client authentication request. In this case the DHCP server(s) accessible from the port may change if the VLAN assigned by the RADIUS server has different DHCP helper addresses than the VLAN used by unauthenticated clients.
Where multiple DHCP servers are assigned to a VLAN, a DHCP client request cannot be directed to a specific server. Thus, where a given VLAN is configured for multiple DHCP servers, all of these servers should be configured with the same IP addressing policy.

Where routing switch “A” is configured to insert its MAC address as the Remote ID in the Option 82 fields appended to DHCP client requests, and upstream DHCP servers use that MAC address as a policy boundary for assigning an IP addressing policy, then replacing switch “A” makes it necessary to reconfigure the upstream DHCP server(s) to recognize the MAC address of the replacement switch. This does not apply in the case where an upstream relay agent “B” is configured with option 82 replace, which removes the Option 82 field originally inserted by switch “A”.

Relay agents without Option 82 can exist in the path between Option 82 relay agents and an Option 82 server. The agents without Option 82 will forward client requests and server responses without any effect on Option 82 fields in the packets.

If the routing switch is not able to add an Option 82 field to a client’s DHCP request due to the message size exceeding the MTU (Maximum Transmission Unit) size, then the request is forwarded to the DHCP server without Option 82 information and an error message is logged in the switch’s Event Log.

DHCP Packet Forwarding

The DHCP relay agent on the routing switch forwards DHCP client packets to all DHCP servers that are configured in the table administrated for each VLAN.

Unicast Forwarding

The packets are forwarded using unicast forwarding if the IP address of the DHCP server is a specific host address. The DHCP relay agent sets the destination IP address of the packet to the IP address of the DHCP server and forwards the message.

Broadcast Forwarding

The packets are forwarded using broadcast forwarding if the IP address of the DHCP server is a subnet address or IP broadcast address (255.255.255.255). The DHCP relay agent sets the DHCP server IP address to broadcast IP address and will be forwarded to all VLANs with configured IP interfaces (except the source VLAN).
Minimum Requirements for DHCP Relay Operation

For the DHCP Relay agent to work, the following steps must be completed:

1. DHCP Relay is enabled on the routing switch (the default setting)
2. A DHCP server is servicing the routing switch
3. IP Routing is enabled on the routing switch
4. There is a route from the DHCP server to the routing switch and back
5. An IP Helper address is configured on the routing switch, set to the IP address of the DHCP server on the VLAN connected to the DHCP Client.

Enabling DHCP Relay

The factory-default configuration enables DHCP. However, if DHCP has been disabled, you can re-enable it at the Config CLI context level by entering this command:

```
ProCurve(config)# dhcp-relay
```

To disable the DHCP Relay function, enter the command:

```
ProCurve(config)# no dhcp-relay
```

Configuring a Helper Address

At the VLAN configuration CLI context level, enter the commands to add the DHCP server's IP address to the VLANs list. For example, to configure a helper address for VLAN 1, enter these commands:

```
ProCurve(config)# vlan 1
ProCurve(vlan-1)# ip helper-address <ip-addr>
```

To remove the DHCP server helper address, enter this command:

```
ProCurve(vlan-1)# no ip helper-address <ip-addr>
```

You can configure up to 256 IP helper addresses in the switch.
Viewing the Current DHCP Relay Configuration

Determining the DHCP Relay Setting. Use `show config` (or `show running` for the running-config file) to list the current DHCP Relay setting. Note that because DHCP Relay is enabled in the default configuration, it does not appear in these listings unless it is disabled.

```
ProCurve(config)# show config
Startup configuration:
; J8697A Configuration Editor; Created on release #X.11.00
hostname "ProCurve"
cdp run
module 1 type J8702A
ip default-gateway 18.30.240.1
snmp-server community "public" Unrestricted
vlan 1
   name "DEFAULT_VLAN"
   untagged A1
   ip address 18.30.240.100 255.255.248.0
   no untagged A2-A24
exit
no dhcp-relay
```

Figure 5-38. Example of Startup-Config Listing with DHCP-Relay Disabled

Listing the Currently Configured DHCP Helper Addresses.

Syntax: `show ip helper-address < vlan-id >`

This command shows the currently configured IP Helper addresses, regardless of whether DHCP-Relay is enabled. For example:

```
ProCurve(config)# show ip helper-address vlan 1
IP Helper Addresses
IP Helper Address
-------------------
10.28.227.97
10.29.227.53
```

Figure 5-39. Example of Listing for IP Helper Addresses
UDP Broadcast Forwarding

Overview

Some applications rely on client requests sent as limited IP broadcasts addressed to a UDP application port. If a server for the application receives such a broadcast, the server can reply to the client. Since typical router behavior, by default, does not allow broadcast forwarding, a client’s UDP broadcast requests cannot reach a target server on a different subnet unless the router is configured to forward client UDP broadcasts to that server.

A switch with routing enabled includes optional per-VLAN UDP broadcast forwarding that allows up to 256 server and/or subnet entries on the switch (16 entries per-VLAN). If an entry for a particular UDP port number is configured on a VLAN and an inbound UDP broadcast packet with that port number is received on the VLAN, then the switch routes the packet to the appropriate subnet. (Each entry can designate either a single device or a single subnet. The switch ignores any entry that designates multiple subnets.)

Note

The number of UDP broadcast forwarding entries supported is affected by the number of IP helper addresses configured to support DHCP Relay. Refer to “Operating Notes for UDP Broadcast Forwarding” on page 5-99.

A UDP forwarding entry includes the desired UDP port number, and can be either an IP unicast address or an IP subnet broadcast address for the subnet the server is in. Thus, an incoming UDP packet carrying the configured port number will be:

■ Forwarded to a specific host if a unicast server address is configured for that port number.
■ Broadcast on the appropriate destination subnet if a subnet address is configured for that port number.

Note that a UDP forwarding entry for a particular UDP port number is always configured in a specific VLAN and applies only to client UDP broadcast requests received inbound on that VLAN. If the VLAN includes multiple subnets, then the entry applies to client broadcasts with that port number from any subnet in the VLAN.

For example, VLAN 1 (15.75.10.1) is configured to forward inbound UDP packets as shown in table 5-19:
Table 5-19. Example of a UDP Packet-Forwarding Environment

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Forwarding Address</th>
<th>UDP Port</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN 1</td>
<td>15.75.10.1</td>
<td>255.255.255.0</td>
<td>15.75.11.143</td>
<td>1188</td>
<td>Unicast address for forwarding inbound UDP packets with UDP port 1188 to a specific device on VLAN 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.75.11.255</td>
<td>1812</td>
<td>Broadcast address for forwarding inbound UDP packets with UDP port 1812 to any device in the 15.75.11.0 network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.75.12.255</td>
<td>1813</td>
<td>Broadcast address for forwarding inbound UDP packets with UDP port 1813 to any device in the 15.75.12.0 network.</td>
</tr>
<tr>
<td>VLAN 2</td>
<td>15.75.11.1</td>
<td>255.255.255.0</td>
<td>None</td>
<td>N/A</td>
<td>Destination VLAN for UDP 1188 broadcasts from clients on VLAN 1. The device identified in the unicast forwarding address configured in VLAN 1 must be on this VLAN. Also the destination VLAN for UDP 1812 from clients on VLAN 1.</td>
</tr>
<tr>
<td>VLAN 3</td>
<td>15.75.12.1</td>
<td>255.255.255.0</td>
<td>None</td>
<td>N/A</td>
<td>Destination VLAN for UDP 1813 broadcasts from clients on VLAN 1.</td>
</tr>
</tbody>
</table>

Note

If an IP server or subnet entry is invalid, a switch will not try to forward UDP packets to the configured device or subnet address.

Subnet Masking for UDP Forwarding Addresses

The subnet mask for a UDP forwarding address is the same as the mask applied to the subnet on which the inbound UDP broadcast packet is received. To forward inbound UDP broadcast packets as limited broadcasts to other subnets, use the broadcast address that covers the subnet you want to reach. For example, if VLAN 1 has an IP address of 15.75.10.1/24 (15.75.10.1 255.255.255.0), then you can configure the following unicast and limited broadcast addresses for UDP packet forwarding to subnet 15.75.11.0:

<table>
<thead>
<tr>
<th>Forwarding Destination Type</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP Unicast to a Single Device in the 15.75.11.0 Subnet</td>
<td>15.75.11.X</td>
</tr>
<tr>
<td>UDP Broadcast to Subnet 15.75.11.0</td>
<td>15.75.11.255</td>
</tr>
</tbody>
</table>
Configuring and Enabling UDP Broadcast Forwarding

To configure and enable UDP broadcast forwarding on the switch:

1. Enable routing.
2. Globally enable UDP broadcast forwarding.
3. On a per-VLAN basis, configure a forwarding address and UDP port type for each type of incoming UDP broadcast you want routed to other VLANs.

Globally Enabling UDP Broadcast Forwarding

Syntax

[n] ip udp-bcast-forward

Enables or disables UDP broadcast forwarding on the router. Routing must be enabled before executing this command. Using the `no` form of this command disables any `ip forward protocol udp` commands configured in VLANs on the switch. (Default: Disabled)

Configuring UDP Broadcast Forwarding on Individual VLANs

This command routes an inbound UDP broadcast packet received from a client on the VLAN to the unicast or broadcast address configured for the UDP port type.

Syntax

[n] ip forward-protocol udp < ip-address > < port-number | port-name >

Used in a VLAN context to configure or remove a server or broadcast address and its associated UDP port number. You can configure a maximum of 16 `forward-protocol udp` assignments in a given VLAN. The switch allows a total of 256 `forward-protocol udp` assignments across all VLANs. You can configure UDP broadcast forwarding addresses regardless of whether UDP broadcast forwarding is globally enabled on the switch. However, the feature does not operate unless globally enabled.

— Continued on the next page. —
<ip-address>: This can be either of the following:

- The unicast address of a destination server on another subnet. For example: 15.75.10.43.
- The broadcast address of the subnet on which a destination server operates. For example, the following address directs broadcasts to All hosts in the 15.75.11.0 subnet: 15.75.11.255.

Note: The subnet mask for a forwarded UDP packet is the same as the subnet mask for the VLAN (or subnet on a multinetted VLAN) on which the UDP broadcast packet was received from a client.

<udp-port-#>: Any UDP port number corresponding to a UDP application supported on a device at the specified unicast address or in the subnet at the specified broadcast address. For more information on UDP port numbers, refer to “TCP/UDP Port Number Ranges” on page 5-99.

<port-name>: Allows use of common names for certain well-known UDP port numbers. You can type in the specific name instead of having to recall the corresponding number:

- dns: Domain Name Service (53)
- ntp: Network Time Protocol (123)
- netbios-ns: NetBIOS Name Service (137)
- netbios-dgm: NetBIOS Datagram Service (138)
- radius: Remote Authentication Dial-In User Service (1812)
- radius-old: Remote Authentication Dial-In User Service (1645)
- rip: Routing Information Protocol (520)
- snmp: Simple Network Management Protocol (161)
- snmp-trap: Simple Network Management Protocol (162)
- tftp: Trivial File Transfer Protocol (69)
- timep: Time Protocol (37)

For example, the following command configures the router to forward UDP broadcasts from a client on VLAN 1 for a time protocol server:

ProCurve(config)# ip forward-protocol udp 15.75.11.155
timep
Displaying the Current IP Forward-Protocol Configuration

Syntax
```
show ip forward-protocol [ vlan < vid > ]
```

Displays the current status of UDP broadcast forwarding and lists the UDP forwarding address(es) configured on all static VLANS in the switch or on a specific VLAN.

WorkingConfig

```
IP Forwarder Addresses

[ UDP Broadcast Forwarding: Disabled ]

VLAN: 1
  IP Forwarder Addresses  UDP Port
  ------------------------  ------
  15.75.11.43             37
  15.75.11.255             53
  15.75.12.255             1813

VLAN: 2
  IP Forwarder Addresses  UDP Port
  ------------------------  ------
  15.75.12.255             1812

VLAN: 3
  IP Forwarder Addresses  UDP Port
  ------------------------  ------
  15.75.10.155   162   16

```

ProCurve

```
ProCurve(config)# show ip forward-protocol [vlan 1]
IP Forwarder Addresses

[ UDP Broadcast Forwarding: Disabled ]

IP Forwarder Addresses  UDP Port
------------------------  ------
15.75.11.43             37
15.75.11.255             53
15.75.12.255             1813
```

Figure 5-40. Displaying Global IP Forward-Protocol Status and Configuration

Figure 5-41. Displaying IP Forward-Protocol Status and Per-VLAN Configuration
Operating Notes for UDP Broadcast Forwarding

Maximum Number of Entries. The number of UDP broadcast entries and IP helper addresses combined can be up to 16 per VLAN, with an overall maximum of 256 on the switch. (IP helper addresses are used with the switch’s DHCP Relay operation. For more information, refer to “Configuring DHCP Relay” on page 5-77.) For example, if VLAN 1 has 2 IP helper addresses configured, you can add up to 14 UDP forwarding entries in the same VLAN.

TCP/UDP Port Number Ranges. There are three ranges:

- Well-Known Ports: 0 - 1023
- Registered Ports: 1024 - 49151
- Dynamic and/or Private Ports: 49152 - 65535

For more information, including a listing of UDP/TCP port numbers, go to the Internet Assigned Numbers Authority (IANA) website at:

http://www.iana.org

Then click on:

Protocol Number Assignment Services

P (Under “Directory of General Assigned Numbers” heading)

Port Numbers

Messages Related to UDP Broadcast Forwarding

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>udp-bcast-forward: IP Routing support must be enabled first.</td>
<td>Appears in the CLI if an attempt to enable UDP broadcast forwarding has been made without IP routing being enabled first. Enable IP routing, then enable UDP broadcast forwarding.</td>
</tr>
<tr>
<td>UDP broadcast forwarder feature enabled</td>
<td>UDP broadcast forwarding has been globally enabled on the router. Appears in the Event Log and, if configured, in SNMP traps.</td>
</tr>
<tr>
<td>UDP broadcast forwarder feature disabled</td>
<td>UDP broadcast forwarding has been globally disabled on the router. This action does not prevent you from configuring UDP broadcast forwarding addresses, but does prevent UDP broadcast forwarding operation. Appears in the Event Log and, if configured, in SNMP traps.</td>
</tr>
<tr>
<td>UDP broadcast forwarder must be disabled first.</td>
<td>Appears in the CLI if you attempt to disable routing while UDP forwarding is enabled on the switch.</td>
</tr>
</tbody>
</table>
Virtual Router Redundancy Protocol (VRRP)

Contents

Overview ... 6-3
Terminology ... 6-4
General Operation ... 6-5
 Virtual Router (VR) ... 6-8
 Virtual IP Address ... 6-8
 Master Router ... 6-9
 Owner Router ... 6-9
 Backup Router ... 6-10
 Virtual Router MAC Address .. 6-10
 VRRP and ARP ... 6-11
 General Operating Rules ... 6-11
Steps for Provisioning VRRP Operation 6-13
 Basic Configuration Process ... 6-13
 Example Configuration ... 6-15
 Associating More Than One Virtual IP Address With a VR 6-17
Configuring VRRP ... 6-18
 Enabling VRRP in the Global Configuration Context 6-18
 Creating a VR and Entering the VR Context 6-19
 Configuring a VR Instance on a VLAN Interface 6-20
 Changing VR Advertisement Interval and Source IP Address ... 6-22
 Preempt Mode on VRRP Backup Routers 6-24
 Enabling or Disabling VRRP Operation on a VR 6-24
Displaying VRRP Configuration and Statistics Data 6-25
 VRRP Configuration Data .. 6-25
 Displaying the VRRP Global Configuration 6-25
 Displaying All VR Configurations on the Router 6-25
Overview

In many networks, edge devices are often configured to send packets to a statically configured default router. If this router becomes unavailable, the devices that use it as their first-hop router become isolated from the network.

VRRP uses dynamic failover to ensure the availability of an end node’s default router. This is done by assigning the IP address used as the default route to a “virtual router”, or VR. The VR includes:

■ an Owner router assigned to forward traffic designated for the virtual router (If the Owner is forwarding traffic for the VR, it is the Master router for that VR.)
■ one or more prioritized Backup routers (If a Backup is forwarding traffic for the VR, it has replaced the Owner as the Master router for that VR.)

This redundancy provides a backup for gateway IP addresses (first-hop routers) so that if a VR's Master router becomes unavailable, the traffic it supports will be transferred to a Backup router without major delays or operator intervention. This operation can eliminate single-point-of-failure problems and provide dynamic failover (and failback) support.

As long as one physical router in a VR configuration is available, the IP addresses assigned to the VR are always available, and the edge devices can send packets to these IP addresses without interruption.

Advantages to using VRRP include:

■ minimizing failover time and bandwidth overhead if a primary router becomes unavailable
■ minimizing service disruptions during a failover
■ providing backup for a load-balanced routing solution
■ addressing failover problems at the router level instead of on the network edge
■ avoiding the need to make configuration changes in the end nodes if a gateway router fails
■ eliminating the need for router discovery protocols to support failover operation
Terminology

Backup: A router configured in a VR as a Backup to the Owner configured for the same VR. There must be a minimum of one Backup in a VR to support VRRP operation if the Owner fails. Every backup is created with a configurable priority (default: 100) that determines the precedence for becoming the Master of the VR if the Owner or another Backup operating as the Master becomes unavailable.

Master: The Owner or Backup router that is currently the physical forwarding agent for routed traffic using the VR as a gateway. There can be only one router operating as the Master for a network or (in the case of a multinetted VLAN) a subnet. If the router configured as the Owner for a VR is available to the network, it will also be the Master. If the Owner fails or loses availability to the network, the highest-priority Backup becomes the Master.

Owner: The router configured in a VR to “own” the “virtual” IP address associated with the VR.(The virtual IP address for the VR must be configured as a real IP address on the VLAN on which the VR is configured. The Owner is automatically configured with the highest VRRP router priority in the VR (255) and operates as the Master router for the VR unless it becomes unavailable to the network.

VR (Virtual Router): Consists of one Owner router and one or more Backup routers, all of which belong to the same network or (in the case of a multinetted VLAN, the same subnet). The Owner is the router that owns the IP address(es) associated with the VR. The VR has one virtual IP address (or, in the case of a multinetted VLAN, multiple, virtual IP addresses) that corresponds to a real IP address on the Owner, and is assigned an identification number termed the VRID.

VRID: The identifier for a specific VR configured on a specific VLAN interface. On a given router, a VRID can be used for only one VR in a given VLAN, but can be used again for a different VR in a different VLAN.
General Operation

VRRP supports router redundancy through a prioritized election process among routers configured as members of the same virtual router (VR).

On a given VLAN, a VR includes two or more member routers configured with a virtual IP address that is also configured as a real IP address on one of the routers, plus a virtual router MAC address. The router that owns the IP address is configured to operate as the Owner of the VR for traffic-forwarding purposes, and by default has the highest VRRP priority in the VR. The other router(s) in the VR have a lower priority and are configured to operate as Backups in case the Owner router becomes unavailable.

The Owner normally operates as the Master for a VR. But if it becomes unavailable, then a failover to a Backup router belonging to the same VR occurs, and this Backup becomes the current Master. If the Owner recovers, a failback occurs, and “Master” status reverts to the Owner. (Note that using more than one Backup provides additional redundancy, meaning that if both the Owner and the highest-priority Backup fail, then another, lower-priority Backup can take over as Master.)

Note

- The virtual IP address used by all VRRP routers in a VR instance is a real IP address that is also configured on the applicable VLAN interface on the VR’s Owner router.

- The same MAC and virtual IP addresses are included in the VRRP configuration for the Owner and all Backup routers belonging to the same VR, and are used as the source addresses for all traffic forwarded by the VR.
Figure 6-1, below, illustrates a virtual router on VLAN 100 supported by Router 1 (R1) and Router 2 (R2).

![Diagram of VRRP configuration](image)

As long as R1 remains available, it operates as the Master. If R1 fails, then R2 takes over as Master.

Figure 6-1. Example of Using VRRP To Provide Redundant Network Access

<table>
<thead>
<tr>
<th>VR Parameter</th>
<th>Router 1 VR Configuration</th>
<th>Router 2 VR Configuration</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRID (Virtual Router ID)</td>
<td>1</td>
<td>1</td>
<td>All routers in the same VR have the same VRID.</td>
</tr>
<tr>
<td>Status</td>
<td>Owner</td>
<td>Backup</td>
<td>One Owner and one or more Backups are allowed in a given VR.</td>
</tr>
<tr>
<td>Virtual IP Address</td>
<td>10.10.100.1</td>
<td>10.10.100.1</td>
<td>The IP address configured for VLAN 100 in R1 (the Owner) is also configured as the Virtual IP Address for VRRP in both R1 and R2.</td>
</tr>
<tr>
<td>VR Source MAC Address</td>
<td>00-00-5E-00-01-01</td>
<td></td>
<td>For any VR in any VLAN, this is always defined as 00-00-5E-00-01-< VRID >, and is not configurable.</td>
</tr>
<tr>
<td>Priority</td>
<td>255 (Default)</td>
<td>100 (Default)</td>
<td>The router configured as Owner in any VR is automatically assigned the highest priority (255). Backup routers are assigned a default priority of 100, which can be reconfigured.</td>
</tr>
</tbody>
</table>
In figure 6-1:

1. Host “A” uses 10.10.100.1 as its next-hop gateway out of the subnet, as represented by the virtual router (VR 1).
 - Router 1 (the configured Owner) advertises itself as the Master in the VR supporting the gateway and:
 - “owns” the VR’s (virtual) IP address
 - transmits ARP responses that associate the VR’s virtual IP address with the (shared) source MAC address for VR 1.
 - During normal operation, Router 1 forwards the routed traffic for host “A”.

2. If Router 1 fails or otherwise becomes unavailable:
 a. Router 1 advertisements of its Master status for VR 1 fail to reach Router 2 (which is the only configured backup).
 b. After the time-out period for receiving Master advertisements expires on Router 2, the VR initiates a failover to Router 2 and it becomes the new Master of the VR.
 c. Router 2 advertises itself as the Master of the VR supporting the gateway and:
 - takes control of the VR’s (virtual) IP address
 - begins transmitting ARP responses that associate the VR’s virtual IP address with the (shared) source MAC address for VR 1
 d. Host “A” routed traffic then moves through Router 2.

3. If Router 1 again becomes available:
 a. Router 1 resumes advertising itself as the Master for the VR and sends ARP responses that associate the VR’s virtual IP address with the (shared) source MAC address for VR 1.
 b. Router 2 receives the advertisement from Router 1 and ceases to operate as the VR’s Master, and halts further transmission of its own VRRP advertisements and ARP responses related to VR 1.
 c. The VR executes a failback to Router 1 as Master, and Host “A” traffic again moves through Router 1.
Virtual Router (VR)

A Virtual Router (VR) instance consists of one Owner router and one or more Backup routers belonging to the same network. Any VR instance exists within a specific VLAN, and all members of a given VR must belong to the same subnet. In a multinetted VLAN, multiple VRs can be configured. The Owner operates as the VR’s Master unless it becomes unavailable, in which case the highest-priority backup becomes the VR’s Master.

A VR includes the following:

- a virtual router identification (VRID) configured on all VRRP routers in the same network or, in the case of a multinetted VLAN, on all routers in the same subnet
- the same virtual IP address configured on each instance of the same VR
- a status of either Owner or Backup configured on each instance of the same VR (On a given VR there can be one Owner and One or more Backups.)
- a priority level configured on each instance of the VR (On the Owner router the highest priority setting, 255, is automatically fixed. On Backups, the default priority setting is 100 and is configurable.)
- a VR MAC address (not configurable)

Where a VLAN is configured with only one network (IP address), one VR is allowed in that VLAN. In a multinetted VLAN, there can be one VR per subnet, with a maximum of 32 VRs in any combination of Masters and Backups.

Note

All routers in a given VR must belong to the same network (or subnet, in the case of a multinetted VLAN).

Virtual IP Address

The virtual IP address associated with a VR must be a real IP address already configured in the associated VLAN interface on the Owner router in the VR. Also, the Owner and all other (Backup) routers belonging to the VR have this IP address configured in their VRID contexts as the virtual IP address. In figure 6-1 on page 6-6, 10.10.100.1 is a real IP address configured on VLAN 100 in Router 1, and is the virtual IP address associated with VR 1.

Note that if the configured Owner in a VR becomes unavailable, then it is no longer the Master for the VR and a Backup router in the VR is elected to assume the role of Master, as described under “Backup Router” on page 6-10.
A subnetted VLAN allows multiple, virtual IP addresses. However, if there are 32 or fewer IP addresses in a VLAN interface and you want VRRP support on multiple subnets, then the recommended approach is to configure a separate VR instance for each IP address in the VLAN. In cases where VRRP support is needed for more than 32 IP addresses in the same VLAN, refer to “Associating More Than One Virtual IP Address With a VR” on page 6-17.

Master Router

The current Master router in a VR operates as the “real”, or physical gateway router for the network or subnet for which a virtual IP address is configured.

Control of Master Selection. Selection of the Master is controlled by the VRRP priority value configured in the VRID context of each router in the VR. The router configured as the Owner in the VR is automatically assigned the highest VRRP priority (255) and, as long as it remains available, operates as the Master router for the VR. (The other routers belonging to the VR as Backups are assigned the default priority value (100) and can be reconfigured to any priority value between 1 and 254, inclusive.) If the current Master becomes unavailable, the protocol uses the priority values configured on the other, available routers in the VR to select another router in the VR to take over the Master function.

Function of the VRRP Advertisement. The current Master router sends periodic advertisements to inform the other router(s) in the VR of its operational status. If the backup VR(s) fail to receive a Master advertisement within the timeout interval, the current Master is assumed to be unavailable and a new Master is elected from the existing Backups. The timeout interval for a VR is three times the advertisement interval configured on the VR(s) in the network or subnet. In the default VRRP configuration, the advertisement interval is one second and the resulting timeout interval is three seconds.

Note

All VRRP routers belonging to the same VR must be configured with the same advertisement interval. As required in RFC 3768, if a locally configured advertisement interval does not match the interval received in an inbound VRRP packet, then the VR drops that packet.

Owner Router

An Owner router for a VR is the default Master router for the VR, and operates as the Owner for all subnets included in the VR. As mentioned earlier, the VRRP priority on an Owner router is always 255 (the highest).
Virtual Router Redundancy Protocol (VRRP)

General Operation

Note

On a multinetted VLAN where multiple subnets are configured in the same VR, the router must be either the Owner for all subnets in the VR or a Backup for all subnets in the VR.

Backup Router

There must be at least one Backup router. A given VR instance on a Backup router must be configured with the same virtual IP address as the Owner for that VR (and both routers must belong to the same network or subnet). Router 2 in figure 6-1 on page 6-6 illustrates this point.

VR Priority Operation. In a Backup router's VR configuration, the virtual router priority defaults to 100. (The priority for the configured Owner is automatically set to the highest value; 255.) In a VR where there are two or more Backup routers, the priority settings can be reconfigured to define the order in which Backups will be reassigned as Master in the event of a failover from the Owner.

Preempt Mode. Where multiple Backup routers exist in a VR, if the current Master fails and the highest-priority Backup is not available, then VRRP selects the next-highest priority Backup to operate as Master. If the highest-priority Backup later becomes available, it pre-empts the lower-priority Backup and takes over the Master function. If you don't want a Backup router to have this preemptive ability on a particular VR, you can disable this operation with the no preempt-mode command. (Note that Preempt Mode applies only to VRRP routers configured as Backups.) Refer to “Preempt Mode on VRRP Backup Routers” on page 6-24.

Virtual Router MAC Address

When a VR instance is configured, the protocol automatically assigns a MAC address based on the standard MAC prefix for VRRP packets, plus the VRID number (as described in RFC 3768). The first five octets form the standard MAC prefix for VRRP, and the last octet is the configured VRID. That is:

```
00-00-5E-00-01-< VRid >
```

For example, the virtual router MAC address for the VR in figure 6-1 on page 6-6 is 00-00-5E-00-01-01.
VRRP and ARP

The Master for a given VR responds to ARP requests for the virtual IP addresses with the VR's assigned MAC address. The virtual MAC address is also used as the source MAC address for the periodic advertisements sent by the current Master.

The VRRP router responds to ARP requests for non-virtual IP addresses (IP addresses on a VLAN interface that are not configured as virtual IP addresses for any VR on that VLAN) with the system MAC address.

General Operating Rules

- IP routing must be enabled on the router before enabling VRRP.
- IP must be enabled on a VLAN before creating a VR instance on the VLAN.
- virtual IP address:
 - On an Owner: The virtual IP address configured in a VR instance must match one of the IP addresses configured in the VLAN interface on which the VR is configured.
 - On a Backup: The virtual IP address configured in a VR instance cannot be a “real” IP address configured in a VLAN interface on that router.

Note

The virtual IP address configured for one VR cannot be configured on another VR.

- Before changing a router from Owner to Backup, or the reverse, the virtual IP address must be removed from the configuration.
- The priority configuration on an Owner can only be 255. The priority configuration on a Backup must be 254 or lower; the default being 100.
- advertisement intervals:
 - A VRRP router must be configured as an Owner or Backup before configuring the advertisement interval.
 - If a VRRP router has a different advertisement interval than a VRRP packet it receives, the router drops the packet. For this reason, the advertisement interval must be the same for the Owner and all Backups in the same VR.
When a VR is active you cannot change any of the following on that VR:
- priority
- advertisement interval
- preempt mode
- virtual IP address

A VR exists within a single VLAN interface. If the VLAN is multinetted, then a separate VR can be configured within the VLAN for each subnet. A VLAN allows up to 32 VRs and the switch allows up to 2048 VRs.

All routers in the same VR must belong to the same network or subnet.

The router supports the following maximums:
- 32 VRs per VLAN in any combination of Masters and Backups
- 2048 VRs per router
- 32 IP addresses per VR

Each VR uses one MAC address as described under “Virtual Router MAC Address” on page 6-10.

If an IP address is deleted on a VLAN interface, one of the following occurs:
- VR Owner: If the VR uses the same IP address as a virtual IP address, then that IP address is deleted from the VR.
- VR Backup: If the VR has a virtual IP address in the same subnet as that of the deleted IP address, then that virtual IP address will be deleted from the VR.

If the deleted virtual IP address was the last virtual IP address of an active VR, then the VR will be deactivated. (For more on multiple, virtual IP addresses on a VR, refer to “Associating More Than One Virtual IP Address With a VR” on page 6-17.)
Steps for Provisioning VRRP Operation

Basic Configuration Process

This process assumes the following for VRRP operation:

- VLANs on the selected routers are already configured and IP-enabled.
- IP routing is enabled
- The network topology allows multiple paths for routed traffic between edge devices.

1. Configure the Owner for VRRP operation and a VR instance.
 a. On the router intended as the Owner for a particular network or subnet, enter the global configuration context and enable VRRP.
      ```
      router vrrp
      ```
 b. Enter the desired VLAN context and configure a VR instance.
      ```
      vlan < vid >
      vrrp vrid < 1 - 255 >
      ```
 Note that this step places the CLI in the context of the specified VR.
 c. Configure the router as the Owner of the VR instance.
      ```
      owner
      ```
 Note that this step automatically fixes the router’s priority as 255 (the highest) for this VR instance. (The Owner priority cannot change.)
 d. Configure the router’s real IP address and subnet mask for the current VLAN interface as the virtual IP address for the VR instance. You can use either of the following methods:
      ```
      virtual-ip-address < ip-mask >
      virtual-ip-address/mask-bits
      ```
 e. Activate the Owner VR instance.
      ```
      enable
      ```
 f. Inspect the configuration for the Owner VR.
      ```
      show vrrp vlan < vid > vrid < vrid-# > config
      ```
 Leave the Owner’s advertisement interval at its default (1 second). (For more on this topic, refer to “Changing VR Advertisement Interval and Source IP Address” on page 6-22.)
2. Configure a Backup for the same VR instance as for the Owner in step 1.
 a. On another router with an interface in the same network or subnet as
 is the Owner (configured in step 1), enter the global configuration
 context and enable VRRP.

 \[\text{router vrrp} \]

 b. Configure (and enter) the same VR instance as was configured for the
 Owner in step 1.

 \[\text{vlan < vid>} \]

 \[\text{vrrp vrid < 1 - 255>} \]

 c. Configure the router as a Backup for the VR instance.

 \[\text{backup} \]

 Note that this step sets the Backup router’s priority as 100 for this VR
 instance.

 d. Optional: If there is only one Backup router, or if you want the priority
 among backups to be determined by the lowest IP address among the
 Backups, leave the VR instance priority for the current backup router
 at the default of 100. If you want to control Backup router priority by
 creating a numeric hierarchy among the Backup routers in the VR,
 then set the priority on each accordingly.

 \[\text{priority < 1 - 254> } \]

 e. Configure the virtual IP address for the current VR. Use the same
 address as you used for the Owner router’s instance of the VR. As
 mentioned earlier, you can use either of the following methods:

 \[\text{virtual-ip-address < ip-mask>} \]

 \[\text{virtual-ip-address/mask-bits} \]

 f. Activate the Backup VR instance.

 \[\text{enable} \]

 g. Inspect the configuration for the Owner VR.

 \[\text{show vrrp vlan < vid>} \ vrid < vrid-#> config \]

 Leave the advertisement interval for Backup routers at the default (1
 second). (For more on this topic, refer to “Changing VR Advertisement
 Interval and Source IP Address” on page 6-22.)

3. Repeat step 2 for each Backup router on the same VR.
Example Configuration

In VR 1, below, R1 is the Owner and the current Master router, and R2 is the (only) Backup in the VR. If R1 becomes unavailable, VR 1 fails over to R2.

Figure 6-2. Example of a Basic VRRP Configuration

<table>
<thead>
<tr>
<th>VLAN 10 IP</th>
<th>VR 1 IP</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router 1</td>
<td>10.10.10.1</td>
<td>10.10.10.1</td>
</tr>
<tr>
<td>Router 2</td>
<td>10.10.10.23</td>
<td>10.10.10.1</td>
</tr>
</tbody>
</table>
Virtual Router Redundancy Protocol (VRRP)
Steps for provisioning VRRP operation

ProCurve(config)# router vrrp
ProCurve(config)# vlan 10
ProCurve(vlan-10)# vrrp vrid 1
ProCurve(vlan-10-vrid-1)# owner
ProCurve(vlan-10-vrid-1)# virtual-ip-address 10.10.10.1 255.255.255.0
ProCurve(vlan-10-vrid-1)# enable
ProCurve(vlan-10-vrid-1)# show vrrp vlan 10 vrid 1 config

VRRP Virtual Router Configuration Information
Vlan ID : 10
Virtual Router ID : 1
Administrative Status [Disabled] : Enabled
Mode [Uninitialized] : Owner
Priority [100] : 255
Advertisement Interval [1] : 1
Preempt Mode [True] : True
Primary IP Address : Lowest
IP Address Subnet Mask
10.10.10.1 255.255.255.0

Because this router is the Owner, the priority is fixed at 255 and cannot be changed.
For the same reason, the Preempt mode cannot be changed.
Because there is only one virtual IP address configured on the VR, the source address included with advertisements from this VR is the same as the virtual IP address for the VR.

Figure 6-3. VRRP Configuration for Router 1 (R1) in Figure 6-2, Above

ProCurve(config)# router vrrp
ProCurve(config)# vlan 10
ProCurve(vlan-10)# vrrp vrid 1
ProCurve(vlan-10-vrid-1)# backup
ProCurve(vlan-10-vrid-1)# virtual-ip-address 10.10.10.1/24
ProCurve(vlan-10-vrid-1)# enable
ProCurve(vlan-10-vrid-1)# show vrrp vlan 10 vrid 1 config

VRRP Virtual Router Configuration Information
Vlan ID : 10
Virtual Router ID : 1
Administrative Status [Disabled] : Enabled
Mode [Uninitialized] : Backup
Priority [100] : 100
Advertisement Interval [1] : 1
Preempt Mode [True] : True
Primary IP Address : Lowest
IP Address Subnet Mask
10.10.10.1 255.255.255.0

This router is a Backup in VR 1 for VLAN 10.
Because this router is a Backup, the priority is set by default to 100 and can be changed to manipulate the precedence for Backup routers in the VR.
On a Backup router, the Preempt mode can be changed. However, in a VR having only one backup, Preempt mode has no effect.

Figure 6-4. VRRP Configuration for Router 2 (R2) in Figure 6-2 on Page 6-15
Associating More Than One Virtual IP Address With a VR

This need arises if a VLAN is configured with more than 32 subnets and it is necessary to apply VRRP to all of these subnets.

Because a VLAN on the routers covered by this Guide supports up to 32 VRs, applying VRRP to a higher number of subnets in the VLAN requires multiple virtual IP addresses in one or more VRs.

If the Owner of a VR is associated with multiple virtual IP addresses, then the Backup router(s) belonging to the same VR must also be associated with the same set of virtual IP addresses. If the virtual IP addresses on the Owner are not also on the Backup(s), a misconfiguration exists. VRRP advertisement packets sent by the VR Master will be dropped by the VR Backup(s) on account of a mismatch among virtual IP addresses.
Configuring VRRP

Enabling VRRP in the Global Configuration Context

VRRP can be configured regardless of the global VRRP configuration status. However, enabling a VR and running VRRP requires enabling it in the global configuration context.

Syntax: [no] router vrrp

Enables or disables VRRP operation in the global configuration context. IP routing must be enabled before enabling VRRP on the router. Disabling global VRRP halts VRRP operation on the router, but does not affect the current VRRP configuration. Enabling or disabling VRRP generates an Event Log message. To display the current global VRRP configuration, use show vrrp config global.

(Default: Disabled)

Syntax: [no] router vrrp traps

Enables or disables SNMP trap generation for the following events:

New Master — Indicates that the sending router has transitioned to 'Master' state.

Authentication Failure - Indicates that a VRRP packet has been received from a router whose authentication key or authentication type conflicts with this router's authentication key or authentication type.

Notes: This feature assumes the snmp-server host command has been used to configure a trap receiver. If a VRRP packet is received with an authentication type other than 0 (zero; that is, no authentication), then the packet is dropped. (Refer to “Operating Notes” on page 6-34.)

(Default: Enabled)
For example, the following commands enable VRRP at the global configuration level and then display the current global VRRP configuration:

```
ProCurve(config)# router vrrp
ProCurve(config)# show vrrp config global

VRRP Global Configuration Information

VRRP Enabled : Yes
Traps Enabled : Yes
```

Figure 6-5. Example of Enabling and Displaying the Global VRRP Configuration

Creating a VR and Entering the VR Context

This command is used to create (or delete) a VR instance and to enter a VR context to do further configuration steps.

Syntax: `[no] vrrp vrid < 1 - 255 >

Used in the VLAN interface context to create a virtual router (VR) instance and to enter the context of the new VR. It is also used to enter the context of an existing VR, and is the method used for accessing a VR for configuration purposes. You can configure up to 32 VRs on a multinetted VLAN.

The VLAN interface must be IP enabled.

For example, to create VR 1 in VLAN 10 and enter the VR context, you would execute the following command:

```
ProCurve(vlan-10)# vrrp vrid 1
ProCurve(vlan-10-vrid-1)#
```
Configuring a VR Instance on a VLAN Interface

The preceeding section describes the command for creating and entering a VR context. This section describes the configuration and activation commands available in the VR context.

Assigning Owner and Backup Status. Each VRRP router must be configured as either the Owner of the VR instance or a Backup for the instance.

Syntax: `<owner|backup>

Used in a VR context of a VLAN to set the router as either the Owner of the VR on that interface or as a Backup. There can be one Owner per network or subnet for a given VR. If the VLAN is multinetted and multiple subnets are configured in the same VR, the router must be either the Owner for all subnets in the VR or a Backup for all subnets in the VR. The VR instance must be disabled (the default VR state) when using this command. (Default: None)

These commands configure and display the Owner status in VR 1 on VLAN 10:

```
ProCurve(vlan-10-vrid-1)# owner
ProCurve(vlan-10-vrid-1)# show vrrp config
```

```
VRRP Global Configuration Information
VRRP Enabled : Yes
Traps Enabled : Yes

VRRP Virtual Router Configuration Information
Vlan ID : 10
Virtual Router ID : 10

Administrative Status [Disabled] : Disabled
Mode [Uninitialized] : Owner
Priority [100] : 255
Advertisement Interval [1] : 1
Preempt Mode [True] : True
Primary IP Address : Lowest

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.1</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>
```

Figure 6-6. Example of Owner Configuration on a VR
Configuring a Virtual IP address in a VR. The virtual IP address must be the same for the Owner and all Backups on the same network or subnet in a VR.

Syntax:

```
virtual-ip-address < owner-ip-addr >/mask-length >
```

```
virtual-ip-address < owner-ip-addr > < mask >
```

Used in a VR context of a VLAN to assign an IP address/mask combination to a VR instance.

For an Owner: The virtual IP address must be one of the IP addresses configured on the VLAN interface for that VR.

For a Backup: The virtual IP address must match the virtual IP address for the Owner.

The Owner and the Backup(s) using a given virtual IP address must all belong to the same network or subnet. Also, the VR instance must be disabled (the default VR state) when using this command.

(Default: None)

For example, if VLAN 10 on router “A” is configured with an IP address of 10.10.10.1/24 and VR 1, and you want router “A” to operate as the Owner for this VR, then the virtual IP address of the Owner in VR 1 on router “A” is also 10.10.10.1/24. On router “B”, which will operate as a Backup for VR 1, VLAN 10 is configured (in the same network) with an IP address of 10.10.10.15/24. However, because the Backup must use the same virtual IP address as the Owner, the virtual IP address for the Backup configured on router “B” for VR 1 is also 10.10.10.1/24.

![Figure 6-7. Example of Virtual IP Address Assignment for Owner and Backup](image-url)
Reconfiguring the Priority for a Backup. When you configure a Backup in a VR, it is given a default priority of 100. This command is intended for use where it is necessary to establish a precedence among the Backup routers on the same network or subnet in a given VR.

Syntax: priority < 1 - 254 >

Used in a VR context of a VLAN where the router is configured as a Backup. This command changes the Backup's priority and is used to establish the precedence of a Backup where there are multiple Backups belonging to the same network or subnet. Also, the VR instance must be disabled (the default VR state) when using this command.

Note: An Owner is automatically assigned the highest priority, 255, which cannot be changed unless the Owner status is reconfigured to Backup.

(Range: 1 - 254, where 1 is the lowest precedence; Default: 100)

Changing VR Advertisement Interval and Source IP Address

The advertisement interval is used in one of two ways, depending on whether a VRRP router is operating as a Master or a Backup.

Syntax: advertise-interval < 1 - 255 >

- *When a VRRP router is operating as Master, this value specifies the interval at which the router sends an advertisement notifying the other VRRP routers on the network or subnet that a Master is active.*

- *When a VRRP router is operating as a Backup, it uses this value to calculate a timeout interval (3 x advt-interval).*

The VR instance must be disabled (the default VR state) when using this command.

(Range: 1 - 255 seconds; Default: 1 second)

For information on advertisements and advertisement intervals, see “Function of the VRRP Advertisement” on page 6-9

Note: All VRRP routers belonging to the same VR must be configured with the same advertisement interval. As required in RFC 3768, if a locally configured advertisement interval does not match the interval received in an inbound VRRP packet, then the VR drops that packet.
Syntax: primary-ip-address < ip-address | lowest >

Specifies the virtual IP address to designate as the source for VRRP advertisements from the VR. If there is only one virtual IP address configured on the VR, the default setting (*lowest*) is sufficient. Where there are multiple virtual IP addresses in the same VR and you want to designate an advertisement source other than the lowest IP Address, use this command.

For an Owner VR, the primary IP address must be one of the virtual IP addresses configured on the VR. For a Backup VR, the primary IP address must be in the same subnet as one of the virtual IP addresses configured on the VR. In addition, the primary IP address for a Backup VR must be one of the IP addresses configured on the VLAN on which the VR is configured.

The VR instance must be disabled (the default VR state) when using this command.

(Default: lowest)

Note: It is common in VRRP applications to have only one virtual IP address per VR. In such cases, the protocol uses that address as the source IP address for VRRP advertisements, and it is not necessary to specify an address.
Preempt Mode on VRRP Backup Routers

This command applies to VRRP Backup routers only, and is used to minimize network disruption due to unnecessary preemption of the Master operation among Backup routers.

Syntax: [no] preempt-mode

Disables or re-enables Preempt mode. In the default mode, a Backup router coming up with a higher priority than another Backup that is currently operating as Master will take over the Master function. Using the no form of the command disables this operation, thus preventing the higher-priority Backup from taking over the Master operation from a lower-priority Backup. This command does not prevent an Owner router from resuming the Master function after recovering from being unavailable. Also, the VR instance must be disabled (the default VR state) when using this command. For more on Preempt mode, refer to “Preempt Mode” on page 6-10.

(Default: Enabled)

Enabling or Disabling VRRP Operation on a VR

After configuring a new VR or changing the configuration on an existing VR, you must use this command to enable the VR to operate.

Syntax: [no] enable

Enabling or disabling a VR enables or disables dynamic VRRP operation on that VR. Also, it is necessary to disable a VR before changing its configuration. Note that VRRP must be enabled (using the router vrrp command) in the global configuration context before enabling a VR. (Disabling a VR can be done regardless of the current, global VRRP configuration.)

(Default: Disabled)
Virtual Router Redundancy Protocol (VRRP)
Displaying VRRP Configuration and Statistics Data

Displaying VRRP Configuration and Statistics Data

VRRP Configuration Data

Displaying the VRRP Global Configuration

Syntax: show vrrp config global

This command displays the configuration state for the global VRRP configuration and VRRP trap generation.

For example:

ProCurve(config)# show vrrp config global

VRRP Global Configuration Information

VRRP Enabled : No
Traps Enabled : Yes

Figure 6-8. Example Output Showing the Default Global VRRP Configuration

Displaying All VR Configurations on the Router

Syntax: show vrrp config

This command displays the configuration for the global VRRP configuration and all VRs configured on the router.

For example, the following figures lists output indicating two Owner VRs configured on the router:
Virtual Router Redundancy Protocol (VRRP)
Displaying VRRP Configuration and Statistics Data

ProCurve(config)# show vrrp config

VRRP Global Configuration Information

VRRP Enabled : Yes
Traps Enabled : Yes

VRRP Virtual Router Configuration Information

Vlan ID : 10
Virtual Router ID : 10
Administrative Status [Disabled] : Disabled
Mode [Initialized] : Owner
Priority [100] : 255
Advertisement Interval [1] : 1
Preempt Mode [True] : True
Primary IP Address : Lowest

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 0.10.1</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

VRRP Virtual Router Configuration Information

Vlan ID : 20
Virtual Router ID : 20
Administrative Status [Disabled] : Enabled
Mode [Initialized] : Owner
Priority [100] : 255
Advertisement Interval [1] : 1
Preempt Mode [True] : True
Primary IP Address : Lowest

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 0.20.1</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

Figure 6-9. Example VRRP Configuration Listing with Two Owner VRs Configured
Displaying a Specific VR Configuration

Syntax: show vrrp vlan 23 vrid 10 config

Displays the configuration for a specific VR in a specific VLAN.

For example, the following command displays the configuration of a VR identified as VR 10 in VLAN 23:

```
ProCurve(config)# show vrrp vlan 23 vrid 10 config

VRRP Virtual Router Configuration Information

Vlan ID : 23
Virtual Router ID : 10

Administrative Status [Disabled] : Disabled
Mode [Uninitialized] : Owner
Priority [100] : 2 55
Advertisement Interval [1] : 1
Preempt Mode [True] : True
Primary IP Address : Lowest

IP Address          Subnet Mask
-----------------   ------------------
10.10.10.1          255.255.255.0
```

Figure 6-10. Example of Displaying the Configuration for a Specific VR
VRRP Statistics Data

All command outputs shown in this section assume that VRRP is enabled at the global configuration level. If global VRRP is disabled, these commands produce the following output:

<table>
<thead>
<tr>
<th>VRRP Global Statistics Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRRP Enabled : No</td>
</tr>
</tbody>
</table>

Figure 6-11. Statistics Command Output If Global VRRP Is Disabled

Displaying Global VRRP Statistics Only

Syntax: show vrrp statistics global

Displays the global VRRP statistics for the router.

- VRRP Enabled
- Protocol Version: 2
- Invalid VRID Pkts Rx: VRRP packets received for a VRID that is not configured on the specific VLAN of the VRRP router.
- Checksum Error Pkts Rx: VRRP packets received with a bad checksum
- Bad Version Pkts Rx: VRRP advertisement packets received with a version number other than 2.

ProCurve(config)# show vrrp statistics global

<table>
<thead>
<tr>
<th>VRRP Global Statistics Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRRP Enabled : Yes</td>
</tr>
<tr>
<td>Protocol Version : 2</td>
</tr>
<tr>
<td>Invalid VRID Pkts Rx : 0</td>
</tr>
<tr>
<td>Checksum Error Pkt s Rx : 0</td>
</tr>
<tr>
<td>Bad Version Pkts Rx : 0</td>
</tr>
</tbody>
</table>

Figure 6-12. Example of a Global VRRP Statistics Output
Displaying Statistics for All VRRP Instances on the Router

Syntax: show vrrp [statistics]

Displays the following VRRP statistics:

- global VRRP statistics for the router
- VRRP statistics for all VRs configured on the router:
 - **State:** Indicates whether the router is a Backup or the current Master of the VR.
 - **Uptime:** The amount of time the router has been up since the last reboot.
 - **Virtual MAC Address:** The virtual MAC address for the VR instance.
 - **Master's IP Address:** The IP address used as the source IP address in the last advertisement packet received from the VR Master. If this VR is the Master, then this is the primary IP address of the VR. If the VR is disabled, this value appears as 0.0.0.0.
 - **Associated IP Address Count:** Number of virtual IP addresses.
 - **Advertise Packets Rx:** The number of VRRP Master advertisements the VR has received from other VRRP routers since the last reboot.
 - **Zero Priority Tx:** The number of VRRP advertisement packets received with the priority field set to 0 (zero).
 - **Bad Length Pkts:** The number of VRRP packets received with missing fields of information.
 - **Mismatched Interval Pkts:** The number of VRRP packets received from other routers (since the last reboot) with an advertisement interval that is different from the interval configured on the current VR. (Note that VRRP packets received with an interval mismatch are dropped.
 - **Mismatched IP TTL Pkts:** The number of VRRP packets received with the IP TTL field not set to 255. Such packets are dropped.
 - **Become Master:** The number of times the VR has become the Master since the last reboot.
Virtual Router Redundancy Protocol (VRRP)
Displaying VRRP Configuration and Statistics Data

— Continued from Previous Page —

- **Zero Priority Tx**: The number of VRRP advertisement packets sent with the priority field set to 0 (zero).
- **Bad Type Pkts**: The number of VRRP packets received with packet type not equal to 1 (that is, not an advertisement packet.)
- **Mismatched Addr List Pkts**: The number of VRRP packets received wherein the list of virtual IP addresses doesn’t match the locally configured virtual IP addresses for a VR.
- **Mismatched Auth Type Pkts**: The number of VRRP packets received with the authentication type not equal to 0 (zero, which is no authentication).

Note that `show vrrp` and `show vrrp statistics` give the same output.

For example, the following output shows the VRRP statistics on a router having one VR (VR 1 in VLAN 10) configured.
ProCurve(config)# show vrrp

VRRP Global Statistics Information

- **VRRP Enabled**: Yes
- **Protocol Version**: 2
- **Invalid VRID Pkts Rx**: 0
- **Checksum Error Pkts Rx**: 0
- **Bad Version Pkts Rx**: 0

VRRP Virtual Router Statistics Information

- **Vlan ID**: 10
- **Virtual Router ID**: 1
- **State**: Master
- **Up Time**: 31 mins
- **Virtual MAC Address**: 00005e-000101
- **Master's IP Address**: 10.10.10.2
- **Associated IP Addr Count**: 1
- **Advertise Pkts Rx**: 1213
- **Become Master**: 2
- **Zero Priority Rx**: 0
- **Zero Priority Tx**: 0
- **Bad Length Pkts**: 0
- **Bad Type Pkts**: 0
- **Mismatched Interval Pkts**: 0
- **Mismatched Addr List Pkts**: 0
- **Mismatched IP TTL Pkts**: 0
- **Mismatched Auth Type Pkts**: 0

Figure 6-13. Output for Show VRRP Command Includes Global and VR Statistics
Virtual Router Redundancy Protocol (VRRP)
Displaying VRRP Configuration and Statistics Data

Displaying Statistics for All VRRP Instances in a VLAN

Syntax: show vrrp vlan < vid > [statistics]

This command displays the VRRP statistics for all VRs configured on the specified VLAN.
The actual statistics data per VR is the same as for the show vrrp [statistics] command (pages 6-29 and 6-31).
Note that show vrrp vlan < vid > and show vrrp vlan < vid > statistics produce the same output.

In the following example, there is one VR configured in VLAN 10.

```
ProCurve(config)# show vrrp vlan 10

VRRP Virtual Router Statistics Information

 Vlan ID : 10
 Virtual Router ID : 10
 State : Master
 Up Time : 6 mins
 Virtual MAC Address : 00005e-00010a
 Master's IP Address : 10.10.10.1
 Associated IP Addr Count : 1
 Advertise Pkts Rx : 1 Become Master : 1
 Zero Priority Rx : 0 Zero Priority Tx : 0
 Bad Length Pkts : 0 Bad Type Pkts : 0
 Mismatched Interval Pkts : 0 Mismatched Addr List Pkts : 0
 Mismatched IP TTL Pkts : 0 Mismatched Auth Type Pkts : 0
```

Figure 6-14. Example of Displaying Statistics for All VRs in a VLAN
Displaying Statistics for a Specific VRRP Instance

Syntax:
```
show vrrp vlan < vid > vrid < 1 - 255 > [statistics]
```

This command displays the VRRP statistics for a specific VR configured on a specific VLAN.
The actual statistics data per VR is the same as for the `show vrrp [statistics]` command (pages 6-29 and 6-31).

Note that `show vrrp vlan < vid > vrid < 1 - 255 >` *and* `show vrrp vlan < vid > vrid < 1 - 255 > statistics` *produce the same output.*

Standards Compliance

VRRP on the switches supported by this Guide includes the following:

- Complies with RFC 3768 Virtual Router Redundancy Protocol (VRRP), except for maximum number of VRs per VLAN, which is 32 on the routers covered by this Guide.

- Compatible with ProCurve Series 9300m routers, the ProCurve 9408sl router, and the ProCurve Series 8100fl switches. (VRRP on these devices is based on RFC 2338.)

- Complies with RFC 2787-- Definitions of Managed Objects for VRRP, except for support for authentication-related values.

- Applies to use on IPv4 routers.
Operating Notes

- **VRRP Advertisements Not Reaching the Backup(s):** If a Master is forwarding traffic properly, but its Backup(s) are prevented from receiving the Master’s VRRP advertisements, then both routers will operate in the Master mode for the VR. If this occurs, traffic for the applicable gateway will continuously alternate between routers (sometimes termed “flapping”).

- **Deleting an IP Address Used To Support a VR:** Refer to “General Operating Rules” on page 6-11.

- **VR Limits:** A VLAN allows up to 32 VRs, and a VR allows up to 32 IP addresses. This means that one VR can support up to 32 subnets. This capacity enables use of VRRP on all subnets in a VLAN that has more than 32 subnets.

- **IPv4:** The routers covered by this Guide support IPv4 IP addressing for VRRP applications.

- **Authentication Type:** As per RFC 3768, the authentication type for VRRP packets inbound on the router is 0 (zero; that is, “no authentication”). Packets with other authentication types are dropped, and authentication type is not supported in the VRRP MIB. If you are coordinating the use of VRRP on the routers covered by this manual with another vendor’s implementation based on an older RFC, then you must set the authentication type to 0 (zero) on the other vendor’s device.
Event Log Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure to send out pkt for vrid <code><vrid-#></code>, vid <code><vid-#></code></td>
<td>A VRRP packet could not be sent out for the indicated VR on the specific VLAN due to any system-dependent problem. If packets could not be sent out, the expected protocol operation may be hampered.</td>
</tr>
<tr>
<td>No VR with vrid <code><vrid-#></code> found on vid <code><vid-#></code></td>
<td>Indicates a VRRP packet received for a VR that does not exist on the VLAN. This can indicate asymmetric configuration of VRs across VRRP routers.</td>
</tr>
<tr>
<td>Pkt recd on a non-VRRP Vlan with vid <code><vid-#></code></td>
<td>A VRRP packet was received on a VLAN that does not have any VRs. This could possibly be a result of misconfiguration of VRs on VLANs.</td>
</tr>
<tr>
<td>Pkt recd with version number <code><ver-#></code>, expected <code><ver-#></code></td>
<td>A VRRP packet was received with a wrong version number.</td>
</tr>
<tr>
<td>Vrid <code><vrid-#></code> on Vid <code><vid-#></code> has taken backup IP ctrl</td>
<td>The Owner of a VR is not available and a Backup has taken Master control of the VR.</td>
</tr>
<tr>
<td>Vrid <code><vrid-#></code> on Vid <code><vid-#></code> has taken owner IP ctrl</td>
<td>The Owner of a VR has taken Master control of the VR, either following a reboot or a failback from a Backup serving as Master.</td>
</tr>
<tr>
<td>Vrid <code><vrid-#></code> on Vid <code><vid-#></code> lost backup IP ctrl</td>
<td>The indicated VR has been preempted by either the Owner or a higher-priority Master.</td>
</tr>
<tr>
<td>Vrid <code><vrid-#></code>, Vid <code><vid-#></code> IP addr is duplicated on the network</td>
<td>The virtual IP address owned by the indicated VR on the indicated VLAN is duplicated on the network.</td>
</tr>
<tr>
<td>Vrid <code><vrid-#></code>, Vid <code><vid-#></code> recd pkt from a duplicate master</td>
<td>A VRRP packet was received from a duplicate master VR by the indicated VR on the indicated VLAN.</td>
</tr>
<tr>
<td>Vrid <code><vrid-#></code>, Vid <code><vid-#></code> recd pkt with advt int mismatch</td>
<td>The indicated VR on the indicated VLAN has received a VRRP Master message carrying a different advertisement interval than is configured on the receiving VR and has dropped the packet.</td>
</tr>
<tr>
<td>Vrid <code><vrid-#></code>, Vid <code><vid-#></code> recd pkt with auth type mismatch</td>
<td>Indicates the VR has received a packet with the authentication type set to 1 or 2. These are generally valid authentication types, but are not required by RFC 3768. Thus, the software supports only an authentication type of 0 (zero), and VRRP packets with 1 or 2 for authentication type are dropped. Refer to “Authentication Type” under “Operating Notes” on page 6-34.</td>
</tr>
</tbody>
</table>
Event Log Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vrid (<vrid-#>), Vid (<vid-#>) recd pkt with bad IP-TTL</td>
<td>A VRRP packet was received by the indicated VR on the indicated VLAN with an IP TTL value not equal to 255.</td>
</tr>
<tr>
<td>Vrid (<vrid-#>), Vid (<vid-#>) recd pkt with checksum error</td>
<td>The indicated VR on the indicated VLAN has received a VRRP advertisement packet with a checksum error. The VR has therefore dropped that packet.</td>
</tr>
<tr>
<td>Vrid (<vrid-#>), Vid (<vid-#>) recd pkt with invalid auth type</td>
<td>Indicates the VR has received a VRRP packet with an authentication type set to a value other than the 0, 1, or 2 (allowed by RFC 3768) and has dropped the packet.</td>
</tr>
<tr>
<td>Vrid (<vrid-#>), Vid (<vid-#>) recd pkt with IP address mismatch</td>
<td>A VRRP packet was received by the indicated VR on the indicated VLAN with virtual IP address(es) that did not match the virtual IP addresses configured on the receiver VR.</td>
</tr>
<tr>
<td>Vrid (<vrid-#>), Vid (<vid-#>) recd pkt with invalid type</td>
<td>A VRRP packet was received by the indicated VR on the indicated VLAN with the packet type not equal to 1.</td>
</tr>
<tr>
<td>VRRP has been disabled on this router</td>
<td>VRRP was disabled at the global config level.</td>
</tr>
<tr>
<td>VRRP has been enabled on this router</td>
<td>VRRP was enabled at the global config level.</td>
</tr>
</tbody>
</table>
Index

A

ABR
definition … 5-36
OSPF … 5-36
ACL
operation with PIM … 3-36
address
IP … 5-10
administrative distance, OSPF … 5-51
advertisement, OSPF … 5-35
area … 5-41
retransmit interval … 5-46, 5-49
area range, OSPF
configuring … 5-43
area, OSPF
assigning VLAN to … 5-44
configuring … 5-41
definition … 5-35
displaying area information … 5-56
ARP
cache … 5-5
cache table … 5-5
configuring parameters … 5-11
how it works … 5-11
proxy … 5-13
ASBR
definition … 5-36
OSPF … 5-36
assigning
IP address … 5-10
authentication
OSPF
description … 5-45
MD5 … 5-45, 5-49
simple password … 5-45, 5-49
auto port setting … 2-5
Autonomous system, OSPF … 5-35

B

blocked port
from IGMP operation … 2-5
bootstrap message, defined … 4-6
bootstrap router … 4-6
broadcast traffic
enabling forwarding of directed … 5-14
BSM, PIM-SM … 4-6
BSR
change priority setting … 4-36
configuration … 4-13
configuring a candidate … 4-35
display data … 4-59
election … 4-13
enable or disable operation … 4-35
fault recovery … 4-14
non-default settings … 4-60
operation … 4-13
PIM-SM domain … 4-6

caches
ARP … 5-5
IP forwarding … 5-6
Candidate Rendezvous Point
defined … 4-6
See C-RP … 4-6
CIDR … 5-10
configuration
ARP parameters … 5-11
default route … 5-21
DHCP Relay … 5-77
ICMP … 5-15
IP routing forwarding parameters … 5-13
IP routing parameters … 5-10
IRDP … 5-74
OSPF … 5-35
RIP … 5-22, 5-24
changing RIP type … 5-25
enabling RIP globally … 5-24
enabling route redistribution … 5-27
redistribution … 5-26
redistribution filters … 5-26
redistribution metric … 5-27
router loop prevention … 5-28
router ID … 5-10
static IP routes … 5-17, 5-19
C-RP
add multicast group … 4-40
change hold time … 4-40
configuring operation … 4-38
defined … 4-6
display config ... 4-63
display status ... 4-63
displaying current set ... 4-61
election priority ... 4-41
enabling or disabling ... 4-40
multicast groups ... 4-38
specify VLAN interface ... 4-38
with PIM-SM router ... 4-6

D
default route ... 5-21
Depending ... 2-13
Designated Router
defined ... 4-7
election criteria ... 4-12
in VLAN ... 4-12
DHCP Relay
configuration ... 5-77
enabling ... 5-92
helper address ... 5-92
minimum requirements ... 5-92
directed broadcasts ... 5-14
displaying information
IRDP ... 5-76
DR (designated router)
defined ... 4-7
election criteria ... 4-12
OSPF ... 5-36
election ... 5-36

directed broadcasts ... 5-14
displaying information
IRDP ... 5-76
DR (designated router)
defined ... 4-7
election criteria ... 4-12
OSPF ... 5-36
election ... 5-36

E
element device ... 6-3
dge router, defined ... 4-7
Enabling ... 6-24
enabling OSPF ... 5-41
enabling RIP, globally ... 5-24
event log
See log.
Excludes Source
See IGMP.
eexternal LSA
displaying ... 5-57

F
failover, VRRP ... 6-3

filters
effect of IGMP ... 2-20
maximum allowed ... 2-6
OSPF redistribution
configuring ... 5-49
displaying ... 5-65
RIP redistribution
configuring ... 5-26
displaying ... 5-34
flow, defined ... 4-7
forwarding
directed broadcasts ... 5-14
forwarding parameters, IP routing
configuring ... 5-13
forwarding port, IGMP ... 2-5

G
global parameters
OSPF ... 5-40
RIP ... 5-23

H
helper address for DHCP Relay ... 5-92

I
IANA ... 5-99
ICMP
configuring ... 5-15
disabling messages ... 5-15
IGMP
benefits ... 2-3
configure per VLAN ... 2-5
effect on filters ... 2-20
Excludes Source ... 2-11
Fast Leave ... 2-13
high-priority disabled with PIM ... 3-36
high-priority forwarding ... 2-5
Include Source ... 2-11
IP multicast address range ... 2-20
leave group ... 2-11
maximum address count ... 2-20
multicast group ... 2-6
multimedia ... 2-3
operation ... 2-11, 2-12
port states ... 2-5
query … 2-11
report … 2-11
status … 2-12
traffic … 2-5
Version 3 … 2-11

Include Source
See IGMP.

Intelligent Edge switch features … 1-9

interface
changing cost of RIP routes … 5-25
changing RIP type … 5-25
OSPF
 defaults … 5-44
 displaying information … 5-58, 5-60
VLAN
 enabling IRDP … 5-75
interface parameters
 OSPF … 5-40
 RIP … 5-23
IP address
 assigning … 5-10
 CIDR notation … 5-10
IP address, multiple … 6-17
IP address, virtual … 6-5
IP forwarding cache … 5-6
IP global parameters … 5-7
IP interface parameters … 5-9
IP route exchange protocols … 5-7
IP route table … 5-5
IP routing
 ARP cache table … 5-5
 changing ARP parameters … 5-11
 changing router ID … 5-10
 configuring static routes … 5-17
 default route … 5-21
 DHCP Relay configuration … 5-77
 directed broadcasts … 5-14
 forwarding cache … 5-6
 forwarding parameters … 5-13
 global parameters … 5-7
ICMP
 configuration … 5-15
 disabling messages … 5-15
 interface parameters … 5-9
 IRDP configuration … 5-74
 OSPF
 area configuration … 5-41
 area information … 5-56
assigning area range … 5-43
configuration … 5-35
displaying configuration and status … 5-54
displaying routing table … 5-69
enabling … 5-41
enabling redistribution … 5-51
general information … 5-54
overview … 5-35
redistribution information … 5-65
overview … 5-3
parameter configuring … 5-10
Proxy ARP, enabling … 5-13
RIP
 configuration … 5-22
 displaying configuration and status … 5-28
 enabling globally … 5-24
 general information … 5-29
 interface information … 5-31
 overview … 5-22
 parameters and defaults … 5-23
 peer information … 5-32
 redistribution … 5-26
 redistribution information … 5-34
 restrict filter information … 5-34
route exchange protocols … 5-7
routing table … 5-5
static route configuration … 5-19
static route types … 5-17
tables and caches … 5-4
VLAN interface … 5-4

IRDP
 configuring … 5-74
 displaying information … 5-76
 enabling globally … 5-75
 enabling on VLAN interface … 5-75

L
leave group
See IGMP.

license, software … 1-9
log, counter … 3-38
log, PIM messages
LSA
 displaying … 5-61
 external
 displaying … 5-57
 reduction … 5-37
MD5 authentication
 OSPF … 5-45, 5-49

metric
 OSPF
 redistribution … 5-50, 5-51

RIP
 changing interface value … 5-25
 redistribution … 5-27

Modifying
 OSPF compliance setting … 5-53
 OSPF default port parameters … 5-53

multicast group
 See IGMP.

multicast source, defined … 4-7

multimedia
 See IGMP.

neighbor
 OSPF … 5-46
 displaying information … 5-63

OSPF
 administrative distance … 5-51
 area … 5-35
 assigning VLAN to … 5-44
 configuring … 5-41
 area range
 configuring … 5-43
 ASBR … 5-36
 authentication
 description … 5-45
 MD5 … 5-45, 5-49
 simple password … 5-45, 5-49
 autonomous system … 5-35
 configuration rules … 5-40
 configuring … 5-35
 displaying information … 5-54
 area … 5-56
 external LSA … 5-57
 interface … 5-58, 5-60
 LSA … 5-61
 neighbor … 5-63
 redistribution … 5-65
 DR (designated router) … 5-36
 election … 5-36
 enabling … 5-41
 global parameters … 5-40
 interface
 defaults … 5-44
 displaying information … 5-58, 5-60
 interface parameters … 5-40, 5-45
 LSA
 displaying information … 5-57
 modifying port parameters … 5-53
 neighbor … 5-46
 overview … 5-35
 parameters … 5-40
 redistribution
 displaying … 5-65
 enabling … 5-51
 metric … 5-50
 metric type … 5-51
 redistribution filters
 configuring … 5-49
 displaying … 5-65
 RFC compliance … 5-37, 5-53
 stub area … 5-41
 transit area … 5-46
 trap … 5-52
 virtual link … 5-46
 displaying information … 5-67
 parameters … 5-48
 virtual neighbor
 displaying information … 5-66
 overview, IP routing … 5-3

parameters
 IP global … 5-7
 IP interface … 5-9
 OSPF … 5-40
 interface … 5-45
 virtual link … 5-48
 peers, RIP
 displaying information … 5-32
 PIM error message … 3-38
 PIM-DM
age-out, multicast group entry ... 3-25
bandwidth conservation ... 3-8
common subnet requirement ... 3-6
compatible draft versions ... 3-4
configuration ... 3-11, 3-12, 3-13, 3-14, 3-21, 3-30
configuration order ... 3-12
configuration, general elements ... 3-9
configuration, router ... 3-12
default settings recommended ... 3-9
displaying data and configuration ... 3-22
draft versions 1 and 2 ... 3-4
error message ... 3-38
expiry time ... 3-26, 3-34
extended branch ... 3-5
features ... 3-4
flood ... 3-6
flood and prune ... 3-6, 3-7, 3-28
flood and prune cycle ... 3-35
flow ... 3-6, 3-9
flow, bridged ... 3-37
flow, equalizing ... 3-36, 3-38, 3-39, 3-40, 3-41
flow, hardware ... 3-10, 3-13
flow, multicast, limit ... 3-10, 3-38
flow, software ... 3-10, 3-13
flow, VLAN limit ... 3-4
forwarding state ... 3-7
general operation ... 3-5
graft packets ... 3-16, 3-17
group entry, age-out ... 3-25
hello hold-time ... 3-15, 3-30
hello interval, effect ... 3-15
host ... 3-9
IGMP required, per VLAN ... 3-9
IGMP requirement ... 3-36
IGMP version 1 ... 3-4
IGMP version 2 ... 3-4
IGMP version 3 ... 3-4
IGMP, per VLAN ... 3-5
IP address required ... 3-36, 3-39
join ... 3-5, 3-6, 3-9
limit, multicast flow ... 3-10
log message ... 3-37, 3-38
log message counter operation ... 3-38
MIB support ... 3-4
MRT ... 3-4, 3-10, 3-13, 3-31, 3-37
MRT, explained ... 3-9
multicast address ... 3-5, 3-10
multicast flow, limit ... 3-10
multicast group address
See multicast address.
multicast router, multiple ... 3-32
Multicast Routing MIB ... 3-4
multicast routing table
See MRT ... 3-4
multicast routing, defined ... 3-10
multicast server ... 3-10
multinetted VLAN ... 3-6, 3-10, 3-19, 3-20
common subnet required ... 3-10, 3-15
neighbor field, blank ... 3-27
neighbor, PIM ... 3-10, 3-23, 3-34
OSPF ... 3-5
outbound VLAN limit ... 3-10
PIM instance per VLAN ... 3-10
prune ... 3-6, 3-10, 3-26, 3-33
prune delay ... 3-17, 3-18
prune state ... 3-7
pruned branch ... 3-5
prune-pending state ... 3-18
pruning ... 3-7
reverse path forwarding ... 3-5
RFC 2932 ... 3-4
RFC 2932 exceptions ... 3-42
RFCs, applicable ... 3-41
RIP ... 3-5
route data ... 3-23
router configuration ... 3-12
routing protocol ... 3-5, 3-9
routing switch 9300 ... 3-35
RPF ... 3-5
S/G pair ... 3-9, 3-10
SNMP traps ... 3-13, 3-28
source address, unicast ... 3-10
state refresh ... 3-7, 3-8, 3-13, 3-25, 3-28, 3-31, 3-34, 3-35
state refresh, on other routers ... 3-35
static route ... 3-5
subnet, common ... 3-6, 3-10
time-to-live threshold ... 3-19, 3-24
traps, SNMP ... 3-13, 3-28
tree, multicast ... 3-5, 3-6
TTL zero ... 3-38
unicast routing ... 3-4, 3-5
unicast source address ... 3-5
unicast source address, server ... 3-10
version differences ... 3-40
VLAN support, inbound ... 3-4
VLAN support, inbound ... 3-4
VLAN support, outbound ... 3-4
VLAN, flow limit ... 3-4
VLAN, multinetted ... 3-6
VLAN, PIM instance per ... 3-10
XRRP ... 3-4

PIM-SM
age-out, multicast group entry ... 4-48
border routers ... 4-12
BSR ... 4-12, 4-13
candidate configuration ... 4-35
message interval ... 4-37
non-default settings ... 4-60
priority setting ... 4-36
protocol ... 4-5
changing DR priority ... 4-33
compatible draft versions ... 4-6
configuration ... 4-27, 4-56
configuring candidate-RPs ... 4-37
Designated Router ... 4-12
display BSR data ... 4-59
display config ... 4-51
display C-RP config ... 4-63
display RP set ... 4-61
display status ... 4-51
displaying settings ... 4-46
DR ... 4-7
 priority ... 4-57
draft versions 1 and 2 ... 4-6
enable/disable SNMP Traps ... 4-41
entries in routing table ... 4-52
event log messages ... 4-66
expire time ... 4-48, 4-57
features ... 4-5
flow capacity ... 4-5
flow, defined ... 4-7
flow, hardware ... 4-41
flow, software ... 4-41
flow, VLAN limit ... 4-5
group address ... 4-47, 4-52
group entry, age-out ... 4-48
hello delay ... 4-31
hello hold-time ... 4-30
hello interval ... 4-31
hello interval, effect ... 4-30
IGMP link ... 4-4
IGMP version 1 ... 4-6
IGMP version 2 ... 4-6
IGMP version 3 ... 4-6
join ... 4-7
join/prune interval ... 4-42
lan-prune-delay ... 4-31
list interfaces ... 4-55
MIB support ... 4-6
MRT ... 4-5, 4-41, 4-52
multicast group distribution ... 4-36
multicast router, multiple ... 4-53
Multicast Routing MIB ... 4-6
multicast routing protocol ... 4-48
multicast routing table
 See MRT. ... 4-5
multicast source ... 4-7
neighbor ... 4-47
neighbor field, blank ... 4-49
neighbor, PIM ... 4-57
non-flooding model ... 4-9
operating notes ... 4-65
operation ... 4-9
PMBR not supported ... 4-12
propagation delay ... 4-31
prune ... 4-7, 4-49, 4-54
 assert ... 4-54
 delay ... 4-32
prune delay ... 4-33
prune-pending state ... 4-33
rendezvous point ... 4-7
rendezvous point tree ... 4-7
RFC 2932 ... 4-6
router types ... 4-12
RP ... 4-12
RP mapping ... 4-5
RPF ... 4-7
RP-Set command ... 4-8
RPT-bit ... 4-53
shortest path tree ... 4-8
show VLAN configs ... 4-55
SNMP traps ... 4-41, 4-51
source address ... 4-47, 4-52
state refresh ... 4-48, 4-51, 4-57
static rendezvous point ... 4-8
Static-RP ... 4-12
time-to-live threshold ... 4-50
traps, SNMP ... 4-41, 4-51
TTL threshold ... 4-50
unicast routing ... 4-5
unicast routing protocol ... 4-49
up time ... 4-48
using SPT controls ... 4-42
VLAN support, inbound ... 4-5
VLAN support, outbound ... 4-5
VLAN, flow limit ... 4-5
VRRP ... 4-6
PMBR ... 4-12
port
auto, IGMP ... 2-5
blocked, IGMP ... 2-5
forwarding, IGMP ... 2-5
state, IGMP control ... 2-5
Premium Edge license ... 1-9
Premium Edge switch features ... 1-9
priority ... 2-5
protocols
IP route exchange ... 5-7
Proxy ARP, enabling ... 5-13
prune, defined ... 4-7

Q
query
See IGMP.
quick start ... 1-8

R
redistribution
global RIP parameters ... 5-23
into RIP ... 5-26
metric
OSPF ... 5-50
RIP ... 5-27
OSPF
displaying ... 5-65
enabling ... 5-51
metric type ... 5-51
RIP
displaying ... 5-34
enabling ... 5-27
redistribution filters
OSPF
configuring ... 5-49
displaying ... 5-65
RIP
configuring ... 5-26
displaying ... 5-34
Rendezvous Point Tree, defined ... 4-7
Rendezvous Point, defined ... 4-7
report
See IGMP.
restrict redistribution
OSPF
configuring ... 5-49
displaying ... 5-65
RIP
displaying ... 5-34
Revers Path Forwarding, defined ... 4-7
RFC 2178 ... 5-37
RFC 2178 compliance
enabling for OSPF ... 5-53
RFC 2338 ... 6-33
RFC 2787 ... 6-33
RFC 2932 ... 3-4, 4-6
RFC 2932 MIB exceptions ... 3-42
RFC 3768 ... 6-9, 6-10, 6-33, 6-34
RFCs, PIM-applicable ... 3-41
RIP
changing RIP type ... 5-25
changing route loop prevention ... 5-28
changing the RIP metric ... 5-25
configuring ... 5-22, 5-24
displaying information ... 5-28, 5-29
displaying interface information ... 5-31
displaying peer information ... 5-32
displaying redistribution information ... 5-34
displaying restrict information ... 5-34
enabling globally ... 5-24
enabling on a VLAN ... 5-25
global parameters ... 5-23
interface parameters ... 5-23
overview ... 5-22
parameters and defaults ... 5-23
redistribution ... 5-26
displaying ... 5-34
enabling ... 5-27
metric ... 5-27
redistribution filters
configuring ... 5-26
displaying ... 5-34
route loop prevention, RIP configuration ... 5-28
route table
OSPF
displaying ... 5-69
router ID
changing ... 5-10

Index – 7
router, multicast, with IGMP ... 2-11
routing
 configuring static routes ... 5-17
 default route ... 5-21
 DHCP Relay configuration ... 5-77
 helper address ... 5-92
 helper address, UDP ... 5-9
 IP static routes ... 5-18, 5-19
 administrative distance ... 5-18, 5-20
 blackhole ... 5-17, 5-20
 configuration ... 5-20
 default route ... 5-8, 5-18
 default route, configuring ... 5-21
 discard traffic ... 5-19
 discard, ICMP notification ... 5-19
 display ... 5-21
 maximum ... 5-3
 metric ... 5-18
 null interface ... 5-18
 null route ... 5-19
 null routes ... 5-17
 one per destination ... 5-17
 reject ... 5-20
 VLAN state ... 5-19
 IRDP configuration ... 5-74
 null routes ... 5-17
 OSPF
 area configuration ... 5-41
 area information ... 5-56
 assigning area range ... 5-43
 displaying configuration and status ... 5-54
 displaying routing table ... 5-69
 enabling ... 5-41
 enabling redistribution ... 5-51
 general information ... 5-54
 overview ... 5-35
 redistribution information ... 5-65
 OSPF configuration ... 5-35
 RIP
 configuration ... 5-22
 displaying configuration and status ... 5-28
 enabling globally ... 5-24
 general information ... 5-29
 interface information ... 5-31
 overview ... 5-22
 parameters and defaults ... 5-23
 peer information ... 5-32
 redistribution ... 5-26
 redistribution information ... 5-34
 restrict filter information ... 5-34
 static route types ... 5-17
 routing, UDP broadcast forward
 See UDP broadcast forwarding.
 RP
 defined ... 4-7
 dynamic ... 4-6
 with PIM-SM router ... 4-6
 RPF, defined ... 4-7
 RP-Set, defined ... 4-8
 RPT
 traffic restricted to ... 4-11
S
 setup screen ... 1-8
 Shortest Path Tree, defined ... 4-8
 SPT
 defined ... 4-8
 operation ... 4-10
 PIM-SM traffic ... 4-42
 static IP routes
 configuring ... 5-17, 5-19
 IP routing
 static route parameters ... 5-18
 route types ... 5-17
 Static Rendezvous Point
 defined ... 4-8
 See SPT
 static-RP
 manual configuration ... 4-42
 Static-RP, defined ... 4-8
 stub area
 OSPF ... 5-41
 subnet ... 2-12
T
 tables
 ARP cache ... 5-5
 IP ... 5-4
 IP route ... 5-5
 transit area
 OSPF ... 5-46
 trap
 OSPF ... 5-52
UDP broadcast forwarding
address types ... 5-94
application ... 5-94
configure ... 5-96
global enable ... 5-96
invalid entry ... 5-95
IP helper address, effect ... 5-94
maximum entries ... 5-94
port-number ranges ... 5-99
show command ... 5-98
subnet address ... 5-94
subnet masking ... 5-95
UDP/TCP port number listing ... 5-99
unicast address ... 5-94
VLAN, subnetted ... 5-94

virtual link
OSPF ... 5-46
displaying information ... 5-67
parameters ... 5-48
virtual MAC address ... 6-10
virtual neighbor
OSPF
displaying information ... 5-66
VLAN
assigning OSPF area to ... 5-44
IGMP configuration ... 2-5
VLAN interface
changing cost of RIP routes ... 5-25
changing RIP type ... 5-25
description ... 5-4
enabling IRDP ... 5-75
IP routing parameters ... 5-9
OSPF
displaying information ... 5-60
interface parameters ... 5-45
modifying defaults ... 5-44
VLAN, outbound limit ... 3-10
VRRP
advantages ... 6-3
advertisement ... 6-7
function ... 6-9
interval ... 6-9, 6-11
ARP response ... 6-7, 6-11
authentication type ... 6-34
Backup router ... 6-3, 6-10
as Master ... 6-3
defined ... 6-4
elected as Master ... 6-8, 6-9
multiple ... 6-5
not receiving advertisements ... 6-34
precedence ... 6-4
priority
See priority.
priority, configure ... 6-22
virtual IP address ... 6-10
backup, configuring ... 6-20
basic configuration steps ... 6-13
configuring ... 6-3–??
disable global ... 6-18
disable on VR ... 6-24
discharged during configuration ... 6-20
display
all instances ... 6-29
configuration for all VRs ... 6-25
global configuration ... 6-25
statistics per VLAN ... 6-32
statistics, global ... 6-28
statistics, specific instance ... 6-33
uptime ... 6-29
VR, specific ... 6-27
dropped packets ... 6-34
election process ... 6-5
enable global ... 6-18
enable on VR ... 6-24
event log ... 6-18
event log messages ... 6-35
example ... 6-6, 6-15, 6-16
failback ... 6-3, 6-5, 6-7
failover ... 6-3, 6-6, 6-7, 6-10
IP address, deleting ... 6-12
IP address, mismatch ... 6-17
IP address, per VR ... 6-12
IP address, real ... 6-5, 6-8
IP address, virtual ... 6-5, 6-6, 6-8, 6-9, 6-10, 6-11
IPv4 ... 6-34
MAC address
shared ... 6-7
source ... 6-7, 6-11
virtual ... 6-11
MAC address, virtual ... 6-10
Master router ... 6-5, 6-9
advertisements failing ... 6-34
defined ... 6-4
election ... 6-8
Owner unavailable ... 6-8
See also Owner router ... 6-3
multinetted VLAN ... 6-8, 6-10, 6-12
overview ... 6-3
Owner priority
See priority.
Owner router ... 6-5, 6-9
default Master ... 6-9
defined ... 6-4
priority
See priority.
See also Master router ... 6-3
owner, configuring ... 6-20
pre-empt mode ... 6-10
pre-empt mode, configure ... 6-24
priority ... 6-6, 6-9
Backup ... 6-8, 6-11, 6-14
Backup default ... 6-9
Owner ... 6-5, 6-9, 6-11, 6-13
Owner default ... 6-10
range for Backup router ... 6-9
VR ... 6-10
priority, Owner ... 6-8
real gateway ... 6-9
RFC
See RFC.
source address for VR ... 6-5
standards compliance ... 6-33
traps, disable ... 6-18
traps, enable ... 6-18
virtual router
See VR.
virtual router ID
See VRID.
VLAN, subnetted ... 6-9
VR
advertisement interval ... 6-11
advertisement interval, change ... 6-22
changes ... 6-12
configure an instance ... 6-20
deactivate ... 6-12
defined ... 6-4
IP address ... 6-12
IP address limit ... 6-34
IP address, delete ... 6-34
MAC address ... 6-5, 6-8
MAC address, source ... 6-6
maximum in a VLAN ... 6-8
maximum per switch ... 6-12
maximum per VLAN ... 6-12
membership ... 6-8
multiple IP addresses ... 6-17
multiple VRs in VLAN ... 6-8
multiple, in a VLAN ... 6-9
operation ... 6-8
owner IP address ... 6-21
priority
See priority.
subnet limit per VLAN ... 6-34
virtual IP address ... 6-21
virtual IP address, configure ... 6-23
virtual IP address, default ... 6-23
VRID ... 6-6, 6-8, 6-10
configure ... 6-19
defined ... 6-4
maximum per VLAN ... 6-19

W
warranty ... 1-ii